Adarsh Krishnamurthy, Christopher Villongco, Amanda Beck, Jeffrey Omens, Andrew McCulloch
{"title":"从图像数据估计左心室舒张和收缩材料特性:左室力学挑战。","authors":"Adarsh Krishnamurthy, Christopher Villongco, Amanda Beck, Jeffrey Omens, Andrew McCulloch","doi":"10.1007/978-3-319-14678-2_7","DOIUrl":null,"url":null,"abstract":"<p><p>Cardiovascular simulations using patient-specific geometries can help researchers understand the mechanical behavior of the heart under different loading or disease conditions. However, to replicate the regional mechanics of the heart accurately, both the nonlinear passive and active material properties must be estimated reliably. In this paper, automated methods were used to determine passive material properties while simultaneously computing the unloaded reference geometry of the ventricles for stress analysis. Two different approaches were used to model systole. In the first, a physiologically-based active contraction model [1] coupled to a hemodynamic three-element Windkessel model of the circulation was used to simulate ventricular ejection. In the second, developed active tension was directly adjusted to match ventricular volumes at end-systole while prescribing the known end-systolic pressure. These methods were tested in four normal dogs using the data provided for the LV mechanics challenge [2]. The resulting end-diastolic and end-systolic geometry from the simulation were compared with measured image data.</p>","PeriodicalId":74866,"journal":{"name":"Statistical atlases and computational models of the heart. STACOM (Workshop)","volume":"8896 ","pages":"63-73"},"PeriodicalIF":0.0000,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/978-3-319-14678-2_7","citationCount":"7","resultStr":"{\"title\":\"Left Ventricular Diastolic and Systolic Material Property Estimation from Image Data: LV Mechanics Challenge.\",\"authors\":\"Adarsh Krishnamurthy, Christopher Villongco, Amanda Beck, Jeffrey Omens, Andrew McCulloch\",\"doi\":\"10.1007/978-3-319-14678-2_7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cardiovascular simulations using patient-specific geometries can help researchers understand the mechanical behavior of the heart under different loading or disease conditions. However, to replicate the regional mechanics of the heart accurately, both the nonlinear passive and active material properties must be estimated reliably. In this paper, automated methods were used to determine passive material properties while simultaneously computing the unloaded reference geometry of the ventricles for stress analysis. Two different approaches were used to model systole. In the first, a physiologically-based active contraction model [1] coupled to a hemodynamic three-element Windkessel model of the circulation was used to simulate ventricular ejection. In the second, developed active tension was directly adjusted to match ventricular volumes at end-systole while prescribing the known end-systolic pressure. These methods were tested in four normal dogs using the data provided for the LV mechanics challenge [2]. The resulting end-diastolic and end-systolic geometry from the simulation were compared with measured image data.</p>\",\"PeriodicalId\":74866,\"journal\":{\"name\":\"Statistical atlases and computational models of the heart. STACOM (Workshop)\",\"volume\":\"8896 \",\"pages\":\"63-73\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/978-3-319-14678-2_7\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistical atlases and computational models of the heart. STACOM (Workshop)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/978-3-319-14678-2_7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical atlases and computational models of the heart. STACOM (Workshop)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-319-14678-2_7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Left Ventricular Diastolic and Systolic Material Property Estimation from Image Data: LV Mechanics Challenge.
Cardiovascular simulations using patient-specific geometries can help researchers understand the mechanical behavior of the heart under different loading or disease conditions. However, to replicate the regional mechanics of the heart accurately, both the nonlinear passive and active material properties must be estimated reliably. In this paper, automated methods were used to determine passive material properties while simultaneously computing the unloaded reference geometry of the ventricles for stress analysis. Two different approaches were used to model systole. In the first, a physiologically-based active contraction model [1] coupled to a hemodynamic three-element Windkessel model of the circulation was used to simulate ventricular ejection. In the second, developed active tension was directly adjusted to match ventricular volumes at end-systole while prescribing the known end-systolic pressure. These methods were tested in four normal dogs using the data provided for the LV mechanics challenge [2]. The resulting end-diastolic and end-systolic geometry from the simulation were compared with measured image data.