利用基本序列信息预测膜蛋白-配体结合残基的机器学习方法的发展。

Q1 Biochemistry, Genetics and Molecular Biology Advances in Bioinformatics Pub Date : 2015-01-01 Epub Date: 2015-01-31 DOI:10.1155/2015/843030
M Xavier Suresh, M Michael Gromiha, Makiko Suwa
{"title":"利用基本序列信息预测膜蛋白-配体结合残基的机器学习方法的发展。","authors":"M Xavier Suresh,&nbsp;M Michael Gromiha,&nbsp;Makiko Suwa","doi":"10.1155/2015/843030","DOIUrl":null,"url":null,"abstract":"<p><p>Locating ligand binding sites and finding the functionally important residues from protein sequences as well as structures became one of the challenges in understanding their function. Hence a Naïve Bayes classifier has been trained to predict whether a given amino acid residue in membrane protein sequence is a ligand binding residue or not using only sequence based information. The input to the classifier consists of the features of the target residue and two sequence neighbors on each side of the target residue. The classifier is trained and evaluated on a nonredundant set of 42 sequences (chains with at least one transmembrane domain) from 31 alpha-helical membrane proteins. The classifier achieves an overall accuracy of 70.7% with 72.5% specificity and 61.1% sensitivity in identifying ligand binding residues from sequence. The classifier performs better when the sequence is encoded by psi-blast generated PSSM profiles. Assessment of the predictions in the context of three-dimensional structures of proteins reveals the effectiveness of this method in identifying ligand binding sites from sequence information. In 83.3% (35 out of 42) of the proteins, the classifier identifies the ligand binding sites by correctly recognizing more than half of the binding residues. This will be useful to protein engineers in exploiting potential residues for functional assessment. </p>","PeriodicalId":39059,"journal":{"name":"Advances in Bioinformatics","volume":"2015 ","pages":"843030"},"PeriodicalIF":0.0000,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2015/843030","citationCount":"18","resultStr":"{\"title\":\"Development of a machine learning method to predict membrane protein-ligand binding residues using basic sequence information.\",\"authors\":\"M Xavier Suresh,&nbsp;M Michael Gromiha,&nbsp;Makiko Suwa\",\"doi\":\"10.1155/2015/843030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Locating ligand binding sites and finding the functionally important residues from protein sequences as well as structures became one of the challenges in understanding their function. Hence a Naïve Bayes classifier has been trained to predict whether a given amino acid residue in membrane protein sequence is a ligand binding residue or not using only sequence based information. The input to the classifier consists of the features of the target residue and two sequence neighbors on each side of the target residue. The classifier is trained and evaluated on a nonredundant set of 42 sequences (chains with at least one transmembrane domain) from 31 alpha-helical membrane proteins. The classifier achieves an overall accuracy of 70.7% with 72.5% specificity and 61.1% sensitivity in identifying ligand binding residues from sequence. The classifier performs better when the sequence is encoded by psi-blast generated PSSM profiles. Assessment of the predictions in the context of three-dimensional structures of proteins reveals the effectiveness of this method in identifying ligand binding sites from sequence information. In 83.3% (35 out of 42) of the proteins, the classifier identifies the ligand binding sites by correctly recognizing more than half of the binding residues. This will be useful to protein engineers in exploiting potential residues for functional assessment. </p>\",\"PeriodicalId\":39059,\"journal\":{\"name\":\"Advances in Bioinformatics\",\"volume\":\"2015 \",\"pages\":\"843030\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1155/2015/843030\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Bioinformatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2015/843030\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2015/1/31 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2015/843030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2015/1/31 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 18

摘要

定位配体结合位点,从蛋白质序列和结构中寻找具有重要功能的残基,成为了解其功能的挑战之一。因此,Naïve贝叶斯分类器已经被训练来预测膜蛋白序列中给定的氨基酸残基是否是配体结合残基,或者仅仅使用基于序列的信息。分类器的输入由目标残基的特征和目标残基两侧的两个序列邻居组成。该分类器在来自31个α -螺旋膜蛋白的42个序列(至少具有一个跨膜结构域的链)的非冗余集上进行训练和评估。该分类器从序列中识别配体结合残基的总体准确率为70.7%,特异性为72.5%,灵敏度为61.1%。当序列被psi-blast生成的PSSM剖面编码时,分类器表现更好。在蛋白质三维结构背景下的预测评估揭示了该方法在从序列信息中识别配体结合位点方面的有效性。在83.3%(42个蛋白质中的35个)的蛋白质中,分类器通过正确识别一半以上的结合残基来识别配体结合位点。这将有助于蛋白质工程师利用潜在残基进行功能评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Development of a machine learning method to predict membrane protein-ligand binding residues using basic sequence information.

Locating ligand binding sites and finding the functionally important residues from protein sequences as well as structures became one of the challenges in understanding their function. Hence a Naïve Bayes classifier has been trained to predict whether a given amino acid residue in membrane protein sequence is a ligand binding residue or not using only sequence based information. The input to the classifier consists of the features of the target residue and two sequence neighbors on each side of the target residue. The classifier is trained and evaluated on a nonredundant set of 42 sequences (chains with at least one transmembrane domain) from 31 alpha-helical membrane proteins. The classifier achieves an overall accuracy of 70.7% with 72.5% specificity and 61.1% sensitivity in identifying ligand binding residues from sequence. The classifier performs better when the sequence is encoded by psi-blast generated PSSM profiles. Assessment of the predictions in the context of three-dimensional structures of proteins reveals the effectiveness of this method in identifying ligand binding sites from sequence information. In 83.3% (35 out of 42) of the proteins, the classifier identifies the ligand binding sites by correctly recognizing more than half of the binding residues. This will be useful to protein engineers in exploiting potential residues for functional assessment.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Bioinformatics
Advances in Bioinformatics Biochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (miscellaneous)
自引率
0.00%
发文量
0
期刊最新文献
Computational Genomics A Guide to RNAseq Data Analysis Using Bioinformatics Approaches Computational Metabolomics Bioinformatics in Personalized Medicine Bioinformatics Tools for Gene and Genome Annotation Analysis of Microbes for Synthetic Biology and Cancer Biology Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1