检测蛋白质丰度的显著变化

Q4 Biochemistry, Genetics and Molecular Biology EuPA Open Proteomics Pub Date : 2015-06-01 DOI:10.1016/j.euprot.2015.02.002
Kai Kammers , Robert N. Cole , Calvin Tiengwe , Ingo Ruczinski
{"title":"检测蛋白质丰度的显著变化","authors":"Kai Kammers ,&nbsp;Robert N. Cole ,&nbsp;Calvin Tiengwe ,&nbsp;Ingo Ruczinski","doi":"10.1016/j.euprot.2015.02.002","DOIUrl":null,"url":null,"abstract":"<div><p>We review and demonstrate how an empirical Bayes method, shrinking a protein's sample variance towards a pooled estimate, leads to far more powerful and stable inference to detect significant changes in protein abundance compared to ordinary <em>t</em>-tests. Using examples from isobaric mass labelled proteomic experiments we show how to analyze data from multiple experiments simultaneously, and discuss the effects of missing data on the inference. We also present easy to use open source software for normalization of mass spectrometry data and inference based on moderated test statistics.</p></div>","PeriodicalId":38260,"journal":{"name":"EuPA Open Proteomics","volume":"7 ","pages":"Pages 11-19"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.euprot.2015.02.002","citationCount":"212","resultStr":"{\"title\":\"Detecting significant changes in protein abundance\",\"authors\":\"Kai Kammers ,&nbsp;Robert N. Cole ,&nbsp;Calvin Tiengwe ,&nbsp;Ingo Ruczinski\",\"doi\":\"10.1016/j.euprot.2015.02.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We review and demonstrate how an empirical Bayes method, shrinking a protein's sample variance towards a pooled estimate, leads to far more powerful and stable inference to detect significant changes in protein abundance compared to ordinary <em>t</em>-tests. Using examples from isobaric mass labelled proteomic experiments we show how to analyze data from multiple experiments simultaneously, and discuss the effects of missing data on the inference. We also present easy to use open source software for normalization of mass spectrometry data and inference based on moderated test statistics.</p></div>\",\"PeriodicalId\":38260,\"journal\":{\"name\":\"EuPA Open Proteomics\",\"volume\":\"7 \",\"pages\":\"Pages 11-19\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.euprot.2015.02.002\",\"citationCount\":\"212\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EuPA Open Proteomics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2212968515000069\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EuPA Open Proteomics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212968515000069","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 212

摘要

我们回顾并演示了经验贝叶斯方法如何将蛋白质的样本方差缩小到汇总估计,从而导致比普通t检验更强大和稳定的推断,以检测蛋白质丰度的显着变化。利用等压质量标记蛋白质组实验的例子,我们展示了如何同时分析多个实验的数据,并讨论了缺失数据对推断的影响。我们还提供了易于使用的开源软件,用于质谱数据的规范化和基于适度测试统计的推理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Detecting significant changes in protein abundance

We review and demonstrate how an empirical Bayes method, shrinking a protein's sample variance towards a pooled estimate, leads to far more powerful and stable inference to detect significant changes in protein abundance compared to ordinary t-tests. Using examples from isobaric mass labelled proteomic experiments we show how to analyze data from multiple experiments simultaneously, and discuss the effects of missing data on the inference. We also present easy to use open source software for normalization of mass spectrometry data and inference based on moderated test statistics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
EuPA Open Proteomics
EuPA Open Proteomics Biochemistry, Genetics and Molecular Biology-Biochemistry
自引率
0.00%
发文量
0
审稿时长
103 days
期刊最新文献
Proceedings of the EuBIC-MS 2020 Developers’ Meeting Editorial: The next generation in (EuPA Open) Proteomics Aims & scope Proceedings of the EuBIC Winter School 2019 Introducing the YPIC challenge
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1