脑电数据的贝叶斯判别分析研究。

Q3 Medicine Open Biomedical Engineering Journal Pub Date : 2014-12-31 eCollection Date: 2014-01-01 DOI:10.2174/1874120701408010142
Yuan Shi, DanDan He, Fang Qin
{"title":"脑电数据的贝叶斯判别分析研究。","authors":"Yuan Shi,&nbsp;DanDan He,&nbsp;Fang Qin","doi":"10.2174/1874120701408010142","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>In this paper, we have done Bayes Discriminant analysis to EEG data of experiment objects which are recorded impersonally come up with a relatively accurate method used in feature extraction and classification decisions.</p><p><strong>Methods: </strong>In accordance with the strength of α wave, the head electrodes are divided into four species. In use of part of 21 electrodes EEG data of 63 people, we have done Bayes Discriminant analysis to EEG data of six objects. Results In use of part of EEG data of 63 people, we have done Bayes Discriminant analysis, the electrode classification accuracy rates is 64.4%.</p><p><strong>Conclusions: </strong>Bayes Discriminant has higher prediction accuracy, EEG features (mainly αwave) extract more accurate. Bayes Discriminant would be better applied to the feature extraction and classification decisions of EEG data.</p>","PeriodicalId":39121,"journal":{"name":"Open Biomedical Engineering Journal","volume":"8 ","pages":"142-6"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/b8/94/TOBEJ-8-142.PMC4382561.pdf","citationCount":"1","resultStr":"{\"title\":\"Study on bayes discriminant analysis of EEG data.\",\"authors\":\"Yuan Shi,&nbsp;DanDan He,&nbsp;Fang Qin\",\"doi\":\"10.2174/1874120701408010142\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>In this paper, we have done Bayes Discriminant analysis to EEG data of experiment objects which are recorded impersonally come up with a relatively accurate method used in feature extraction and classification decisions.</p><p><strong>Methods: </strong>In accordance with the strength of α wave, the head electrodes are divided into four species. In use of part of 21 electrodes EEG data of 63 people, we have done Bayes Discriminant analysis to EEG data of six objects. Results In use of part of EEG data of 63 people, we have done Bayes Discriminant analysis, the electrode classification accuracy rates is 64.4%.</p><p><strong>Conclusions: </strong>Bayes Discriminant has higher prediction accuracy, EEG features (mainly αwave) extract more accurate. Bayes Discriminant would be better applied to the feature extraction and classification decisions of EEG data.</p>\",\"PeriodicalId\":39121,\"journal\":{\"name\":\"Open Biomedical Engineering Journal\",\"volume\":\"8 \",\"pages\":\"142-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/b8/94/TOBEJ-8-142.PMC4382561.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Open Biomedical Engineering Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2174/1874120701408010142\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2014/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Biomedical Engineering Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/1874120701408010142","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2014/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 1

摘要

目的:本文对客观记录的实验对象的脑电数据进行贝叶斯判别分析,得出一种较为准确的方法用于特征提取和分类决策。方法:根据α波的强弱,将头部电极分为4种。利用63人21个电极的部分脑电数据,对6个对象的脑电数据进行了贝叶斯判别分析。结果对63人的部分脑电数据进行贝叶斯判别分析,电极分类正确率为64.4%。结论:贝叶斯判别法预测准确率较高,脑电特征(主要是α波)提取更准确。贝叶斯判别法可以更好地应用于脑电数据的特征提取和分类决策。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Study on bayes discriminant analysis of EEG data.

Objective: In this paper, we have done Bayes Discriminant analysis to EEG data of experiment objects which are recorded impersonally come up with a relatively accurate method used in feature extraction and classification decisions.

Methods: In accordance with the strength of α wave, the head electrodes are divided into four species. In use of part of 21 electrodes EEG data of 63 people, we have done Bayes Discriminant analysis to EEG data of six objects. Results In use of part of EEG data of 63 people, we have done Bayes Discriminant analysis, the electrode classification accuracy rates is 64.4%.

Conclusions: Bayes Discriminant has higher prediction accuracy, EEG features (mainly αwave) extract more accurate. Bayes Discriminant would be better applied to the feature extraction and classification decisions of EEG data.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Open Biomedical Engineering Journal
Open Biomedical Engineering Journal Medicine-Medicine (miscellaneous)
CiteScore
1.60
自引率
0.00%
发文量
4
期刊最新文献
F.E.M. Stress-Investigation of Scolios Apex. Characterization of the F-box Proteins FBXW2 and FBXL14 in the Initiation of Bone Regeneration in Transplants given to Nude Mice. Natural Sensations Evoked in Distal Extremities Using Surface Electrical Stimulation. Investigating the Conformation of S100β Protein Under Physiological Parameters Using Computational Modeling: A Clue for Rational Drug Design. Reliability, Learnability and Efficiency of Two Tools for Cement Crowns Retrieval in Dentistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1