{"title":"[胶质原纤维酸性蛋白:脊椎动物脑星形胶质细胞中中间细丝的成分]。","authors":"E G Sukhorukova, D É Kruzhevskiĭ, O S Alekseeva","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Glial fibrillary acidic protein (GFAP) refers to the type III intermediate filament proteins and is the essential component of the cytoskeleton in astrocytes of all vertebrates. This review presents current data on the molecular organization of GFAP in a comparative aspect. The results of most relevant studies using immunocytochemical labeling of the protein are summarized. The data on the changes in expression of GFAP in Alexander disease caused by the primary pathology of astrocytes are presented.</p>","PeriodicalId":24017,"journal":{"name":"Zhurnal evoliutsionnoi biokhimii i fiziologii","volume":"51 1","pages":"3-10"},"PeriodicalIF":0.0000,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"[Glial fibrillary acidic protein: the component of intermediate filaments in the vertebrate brain astrocytes].\",\"authors\":\"E G Sukhorukova, D É Kruzhevskiĭ, O S Alekseeva\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Glial fibrillary acidic protein (GFAP) refers to the type III intermediate filament proteins and is the essential component of the cytoskeleton in astrocytes of all vertebrates. This review presents current data on the molecular organization of GFAP in a comparative aspect. The results of most relevant studies using immunocytochemical labeling of the protein are summarized. The data on the changes in expression of GFAP in Alexander disease caused by the primary pathology of astrocytes are presented.</p>\",\"PeriodicalId\":24017,\"journal\":{\"name\":\"Zhurnal evoliutsionnoi biokhimii i fiziologii\",\"volume\":\"51 1\",\"pages\":\"3-10\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Zhurnal evoliutsionnoi biokhimii i fiziologii\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zhurnal evoliutsionnoi biokhimii i fiziologii","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
[Glial fibrillary acidic protein: the component of intermediate filaments in the vertebrate brain astrocytes].
Glial fibrillary acidic protein (GFAP) refers to the type III intermediate filament proteins and is the essential component of the cytoskeleton in astrocytes of all vertebrates. This review presents current data on the molecular organization of GFAP in a comparative aspect. The results of most relevant studies using immunocytochemical labeling of the protein are summarized. The data on the changes in expression of GFAP in Alexander disease caused by the primary pathology of astrocytes are presented.