三氯生聚合物抗菌性能的计算构象化学分析。

Journal of nature and science Pub Date : 2015-03-01
Richard C Petersen
{"title":"三氯生聚合物抗菌性能的计算构象化学分析。","authors":"Richard C Petersen","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Triclosan is a diphenyl ether antimicrobial that has been analyzed by computational conformational chemistry for an understanding of Mechanomolecular Theory. Subsequent energy profile analysis combined with easily seen three-dimensional chemistry structure models for the nonpolar molecule Triclosan show how single bond rotations can alternate rapidly at a polar and nonpolar interface. Bond rotations for the center ether oxygen atom of the two aromatic rings then expose or hide nonbonding lone-pair electrons for the oxygen atom depending on the polar nature of the immediate local molecular environment. Rapid bond movements can subsequently produce fluctuations as vibration energy. Consequently, related mechanical molecular movements calculated as energy relationships by forces acting through different bond positions can help improve on current Mechanomolecular Theory. A previous controversy reported as a discrepancy in literature contends for a possible bacterial resistance from Triclosan antimicrobial. However, findings in clinical settings have not reported a single case for Triclosan bacterial resistance in over 40 years that has been documented carefully in government reports. As a result, Triclosan is recommended whenever there is a health benefit consistent with a number of approvals for use of Triclosan in healthcare devices. Since Triclosan is the most researched antimicrobial ever, literature meta analysis with computational chemistry can best describe new molecular conditions that were previously impossible by conventional chemistry methods. Triclosan vibrational energy can now explain the molecular disruption of bacterial membranes. Further, Triclosan mechanomolecular movements help illustrate use in polymer matrix composites as an antimicrobial with two new additive properties as a toughening agent to improve matrix fracture toughness from microcracking and a hydrophobic wetting agent to help incorporate strengthening fibers. Interrelated Mechanomolecular Theory by oxygen atom bond rotations or a nitrogen-type pyramidal inversion can be shown to produce energy at a polar and nonpolar boundary condition to better make clear membrane transport of other molecules, cell recognition/signaling/defense and enzyme molecular \"mixing\" action.</p>","PeriodicalId":73848,"journal":{"name":"Journal of nature and science","volume":"1 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2015-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4394635/pdf/nihms664480.pdf","citationCount":"0","resultStr":"{\"title\":\"Triclosan Computational Conformational Chemistry Analysis for Antimicrobial Properties in Polymers.\",\"authors\":\"Richard C Petersen\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Triclosan is a diphenyl ether antimicrobial that has been analyzed by computational conformational chemistry for an understanding of Mechanomolecular Theory. Subsequent energy profile analysis combined with easily seen three-dimensional chemistry structure models for the nonpolar molecule Triclosan show how single bond rotations can alternate rapidly at a polar and nonpolar interface. Bond rotations for the center ether oxygen atom of the two aromatic rings then expose or hide nonbonding lone-pair electrons for the oxygen atom depending on the polar nature of the immediate local molecular environment. Rapid bond movements can subsequently produce fluctuations as vibration energy. Consequently, related mechanical molecular movements calculated as energy relationships by forces acting through different bond positions can help improve on current Mechanomolecular Theory. A previous controversy reported as a discrepancy in literature contends for a possible bacterial resistance from Triclosan antimicrobial. However, findings in clinical settings have not reported a single case for Triclosan bacterial resistance in over 40 years that has been documented carefully in government reports. As a result, Triclosan is recommended whenever there is a health benefit consistent with a number of approvals for use of Triclosan in healthcare devices. Since Triclosan is the most researched antimicrobial ever, literature meta analysis with computational chemistry can best describe new molecular conditions that were previously impossible by conventional chemistry methods. Triclosan vibrational energy can now explain the molecular disruption of bacterial membranes. Further, Triclosan mechanomolecular movements help illustrate use in polymer matrix composites as an antimicrobial with two new additive properties as a toughening agent to improve matrix fracture toughness from microcracking and a hydrophobic wetting agent to help incorporate strengthening fibers. Interrelated Mechanomolecular Theory by oxygen atom bond rotations or a nitrogen-type pyramidal inversion can be shown to produce energy at a polar and nonpolar boundary condition to better make clear membrane transport of other molecules, cell recognition/signaling/defense and enzyme molecular \\\"mixing\\\" action.</p>\",\"PeriodicalId\":73848,\"journal\":{\"name\":\"Journal of nature and science\",\"volume\":\"1 3\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4394635/pdf/nihms664480.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of nature and science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of nature and science","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

三氯生是一种二苯基醚抗菌剂,通过计算构象化学对其进行了分析,以理解机械分子理论。随后的能量分布分析结合非极性分子三氯生的三维化学结构模型显示了单键旋转如何在极性和非极性界面上快速交替。两个芳香环的中心醚氧原子的键旋转会暴露或隐藏氧原子的非成键孤对电子,这取决于直接局部分子环境的极性性质。键的快速移动随后会产生波动作为振动能量。因此,将相关的机械分子运动计算为通过不同键位置作用的力的能量关系,有助于改进现有的机械分子理论。先前的争议报道为文献差异主张细菌可能对三氯生抗菌剂产生耐药性。然而,在政府报告中仔细记录的40多年中,临床研究结果未报告一例三氯生细菌耐药病例。因此,只要有与许多批准在医疗保健设备中使用三氯生一致的健康益处,就推荐使用三氯生。由于三氯生是迄今为止研究最多的抗微生物药物,使用计算化学的文献荟萃分析可以最好地描述以前传统化学方法不可能实现的新分子条件。三氯生振动能现在可以解释细菌膜的分子破坏。此外,三氯生的机械分子运动有助于说明在聚合物基复合材料中作为抗菌剂的应用,它具有两种新的添加剂特性,一种是增韧剂,可以提高基体的微裂断裂韧性,另一种是疏水润湿剂,可以帮助增强纤维。相互关联的分子力学理论可以通过氧原子键旋转或氮型锥体反转来证明在极性和非极性边界条件下产生能量,从而更好地阐明膜上其他分子的转运、细胞识别/信号/防御和酶分子的“混合”作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Triclosan Computational Conformational Chemistry Analysis for Antimicrobial Properties in Polymers.

Triclosan is a diphenyl ether antimicrobial that has been analyzed by computational conformational chemistry for an understanding of Mechanomolecular Theory. Subsequent energy profile analysis combined with easily seen three-dimensional chemistry structure models for the nonpolar molecule Triclosan show how single bond rotations can alternate rapidly at a polar and nonpolar interface. Bond rotations for the center ether oxygen atom of the two aromatic rings then expose or hide nonbonding lone-pair electrons for the oxygen atom depending on the polar nature of the immediate local molecular environment. Rapid bond movements can subsequently produce fluctuations as vibration energy. Consequently, related mechanical molecular movements calculated as energy relationships by forces acting through different bond positions can help improve on current Mechanomolecular Theory. A previous controversy reported as a discrepancy in literature contends for a possible bacterial resistance from Triclosan antimicrobial. However, findings in clinical settings have not reported a single case for Triclosan bacterial resistance in over 40 years that has been documented carefully in government reports. As a result, Triclosan is recommended whenever there is a health benefit consistent with a number of approvals for use of Triclosan in healthcare devices. Since Triclosan is the most researched antimicrobial ever, literature meta analysis with computational chemistry can best describe new molecular conditions that were previously impossible by conventional chemistry methods. Triclosan vibrational energy can now explain the molecular disruption of bacterial membranes. Further, Triclosan mechanomolecular movements help illustrate use in polymer matrix composites as an antimicrobial with two new additive properties as a toughening agent to improve matrix fracture toughness from microcracking and a hydrophobic wetting agent to help incorporate strengthening fibers. Interrelated Mechanomolecular Theory by oxygen atom bond rotations or a nitrogen-type pyramidal inversion can be shown to produce energy at a polar and nonpolar boundary condition to better make clear membrane transport of other molecules, cell recognition/signaling/defense and enzyme molecular "mixing" action.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Postural Stability Variables for Dynamic Equilibrium. Cigarette Smoking-Mediated Macrophage Reprogramming: Mechanistic Insights and Therapeutic Implications. Evaluation of in-vitro cytotoxic effect of 5-FU loaded-chitosan nanoparticles against spheroid models. Effects of Bronchopulmonary Dysplasia on Swallow:Breath Interaction and Phase of Respiration with Swallow During Non-nutritive Suck. Systemic Treatment of Advanced Hepatocellular Carcinoma in Older Adults.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1