原发性纤毛调节损伤肾脏典型和非典型Wnt信号反应的平衡。

Fibrogenesis & Tissue Repair Pub Date : 2015-04-16 eCollection Date: 2015-01-01 DOI:10.1186/s13069-015-0024-y
Shoji Saito, Björn Tampe, Gerhard A Müller, Michael Zeisberg
{"title":"原发性纤毛调节损伤肾脏典型和非典型Wnt信号反应的平衡。","authors":"Shoji Saito,&nbsp;Björn Tampe,&nbsp;Gerhard A Müller,&nbsp;Michael Zeisberg","doi":"10.1186/s13069-015-0024-y","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>While kidney injury is associated with re-expression of numerous Wnt ligands and receptors, molecular mechanisms which underlie regulation of distinct Wnt signaling pathways and ensuing biological consequences remain incompletely understood. Primary cilia are increasingly being recognized as cellular 'antennae' which sense and transduce signals from the microenvironment, particularly through Wnt signaling. Here, we explored the role of cilia as modulators of canonical and non-canonical Wnt signaling activities involving tubular epithelial cells in the injured kidney.</p><p><strong>Results: </strong>We demonstrate that in the mouse model of unilateral ureter obstruction, progression of kidney injury correlates with increased expression of numerous Wnt ligands, and that increased expression of Wnt ligands corresponded with over-activation of canonical Wnt signaling. In contrast, non-canonical Wnt signaling dropped significantly during the course of kidney injury despite gradually increased expression of typical non-canonical and intermediate Wnt signaling ligands. We further demonstrate that in cultured tubular epithelial cells, cilia modulate balance between canonical and non-canonical signaling responses upon exposure to Wnt ligands.</p><p><strong>Conclusions: </strong>We provide evidence that in the context of renal injury, primary cilia act as molecular switches between canonical and non-canonical Wnt signaling activity, possibly determining between regenerative and pro-fibrotic effects of Wnt re-expression in the injured kidney.</p>","PeriodicalId":12264,"journal":{"name":"Fibrogenesis & Tissue Repair","volume":"8 ","pages":"6"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s13069-015-0024-y","citationCount":"32","resultStr":"{\"title\":\"Primary cilia modulate balance of canonical and non-canonical Wnt signaling responses in the injured kidney.\",\"authors\":\"Shoji Saito,&nbsp;Björn Tampe,&nbsp;Gerhard A Müller,&nbsp;Michael Zeisberg\",\"doi\":\"10.1186/s13069-015-0024-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>While kidney injury is associated with re-expression of numerous Wnt ligands and receptors, molecular mechanisms which underlie regulation of distinct Wnt signaling pathways and ensuing biological consequences remain incompletely understood. Primary cilia are increasingly being recognized as cellular 'antennae' which sense and transduce signals from the microenvironment, particularly through Wnt signaling. Here, we explored the role of cilia as modulators of canonical and non-canonical Wnt signaling activities involving tubular epithelial cells in the injured kidney.</p><p><strong>Results: </strong>We demonstrate that in the mouse model of unilateral ureter obstruction, progression of kidney injury correlates with increased expression of numerous Wnt ligands, and that increased expression of Wnt ligands corresponded with over-activation of canonical Wnt signaling. In contrast, non-canonical Wnt signaling dropped significantly during the course of kidney injury despite gradually increased expression of typical non-canonical and intermediate Wnt signaling ligands. We further demonstrate that in cultured tubular epithelial cells, cilia modulate balance between canonical and non-canonical signaling responses upon exposure to Wnt ligands.</p><p><strong>Conclusions: </strong>We provide evidence that in the context of renal injury, primary cilia act as molecular switches between canonical and non-canonical Wnt signaling activity, possibly determining between regenerative and pro-fibrotic effects of Wnt re-expression in the injured kidney.</p>\",\"PeriodicalId\":12264,\"journal\":{\"name\":\"Fibrogenesis & Tissue Repair\",\"volume\":\"8 \",\"pages\":\"6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1186/s13069-015-0024-y\",\"citationCount\":\"32\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fibrogenesis & Tissue Repair\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s13069-015-0024-y\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2015/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fibrogenesis & Tissue Repair","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s13069-015-0024-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2015/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 32

摘要

背景:虽然肾损伤与许多Wnt配体和受体的重新表达有关,但不同Wnt信号通路调控的分子机制和随之而来的生物学后果仍不完全清楚。初级纤毛越来越被认为是细胞的“天线”,它感知和传递来自微环境的信号,特别是通过Wnt信号。在这里,我们探讨了纤毛作为涉及肾小管上皮细胞的典型和非典型Wnt信号活动的调节剂的作用。结果:我们发现,在单侧输尿管梗阻小鼠模型中,肾损伤的进展与多种Wnt配体表达的增加相关,并且Wnt配体表达的增加与典型Wnt信号的过度激活相对应。相比之下,在肾损伤过程中,尽管典型的非典型和中间Wnt信号配体的表达逐渐增加,但非典型Wnt信号明显下降。我们进一步证明,在培养的小管上皮细胞中,纤毛在暴露于Wnt配体时调节规范和非规范信号反应之间的平衡。结论:我们提供的证据表明,在肾损伤的情况下,原发性纤毛作为典型和非典型Wnt信号活性之间的分子开关,可能决定了受损肾脏中Wnt重新表达的再生和促纤维化作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Primary cilia modulate balance of canonical and non-canonical Wnt signaling responses in the injured kidney.

Background: While kidney injury is associated with re-expression of numerous Wnt ligands and receptors, molecular mechanisms which underlie regulation of distinct Wnt signaling pathways and ensuing biological consequences remain incompletely understood. Primary cilia are increasingly being recognized as cellular 'antennae' which sense and transduce signals from the microenvironment, particularly through Wnt signaling. Here, we explored the role of cilia as modulators of canonical and non-canonical Wnt signaling activities involving tubular epithelial cells in the injured kidney.

Results: We demonstrate that in the mouse model of unilateral ureter obstruction, progression of kidney injury correlates with increased expression of numerous Wnt ligands, and that increased expression of Wnt ligands corresponded with over-activation of canonical Wnt signaling. In contrast, non-canonical Wnt signaling dropped significantly during the course of kidney injury despite gradually increased expression of typical non-canonical and intermediate Wnt signaling ligands. We further demonstrate that in cultured tubular epithelial cells, cilia modulate balance between canonical and non-canonical signaling responses upon exposure to Wnt ligands.

Conclusions: We provide evidence that in the context of renal injury, primary cilia act as molecular switches between canonical and non-canonical Wnt signaling activity, possibly determining between regenerative and pro-fibrotic effects of Wnt re-expression in the injured kidney.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Matrix and cell phenotype differences in Dupuytren's disease. Activation of hepatic stellate cell in Pten null liver injury model. Protective role for miR-9-5p in the fibrogenic transformation of human dermal fibroblasts. Age-dependent development of liver fibrosis in Glmp (gt/gt) mice. Active transforming growth factor-β is associated with phenotypic changes in granulomas after drug treatment in pulmonary tuberculosis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1