多肽骨架的键距取决于局部构象。

Roberto Improta, Luigi Vitagliano, Luciana Esposito
{"title":"多肽骨架的键距取决于局部构象。","authors":"Roberto Improta,&nbsp;Luigi Vitagliano,&nbsp;Luciana Esposito","doi":"10.1107/S1399004715005507","DOIUrl":null,"url":null,"abstract":"<p><p>By combining quantum-mechanical analysis of small model peptides and statistical surveys of high-resolution protein structures, a systematic conformational dependence of bond lengths in polypeptide backbones has been unveiled which involves both the peptide bond (C-O and C-N) and those bonds centred on the C(α) atom. All of these bond lengths indeed display a systematic variability in the ψ angle according to both calculations and surveys of protein structures. The overall agreement between the computed and the statistical data suggests that these trends are essentially driven by local effects. The dependence of C(α) distances on ψ is governed by interactions between the σ system of the C(α) moiety and the C-O π system of the peptide bond. Maximum and minimum values for each bond distance are found for conformations with the specific bond perpendicular and parallel to the adjacent CONH peptide plane, respectively. On the other hand, the variability of the C-O and C-N distances is related to the strength of the interactions between the lone pair of the N atom and the C-O π* system, which is modulated by the ψ angle. The C-O and C-N distances are related but their trends are not strictly connected to peptide-bond planarity, although a correlation amongst all of these parameters is expected on the basis of the classical resonance model. </p>","PeriodicalId":7047,"journal":{"name":"Acta crystallographica. Section D, Biological crystallography","volume":"71 Pt 6","pages":"1272-83"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1107/S1399004715005507","citationCount":"11","resultStr":"{\"title\":\"Bond distances in polypeptide backbones depend on the local conformation.\",\"authors\":\"Roberto Improta,&nbsp;Luigi Vitagliano,&nbsp;Luciana Esposito\",\"doi\":\"10.1107/S1399004715005507\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>By combining quantum-mechanical analysis of small model peptides and statistical surveys of high-resolution protein structures, a systematic conformational dependence of bond lengths in polypeptide backbones has been unveiled which involves both the peptide bond (C-O and C-N) and those bonds centred on the C(α) atom. All of these bond lengths indeed display a systematic variability in the ψ angle according to both calculations and surveys of protein structures. The overall agreement between the computed and the statistical data suggests that these trends are essentially driven by local effects. The dependence of C(α) distances on ψ is governed by interactions between the σ system of the C(α) moiety and the C-O π system of the peptide bond. Maximum and minimum values for each bond distance are found for conformations with the specific bond perpendicular and parallel to the adjacent CONH peptide plane, respectively. On the other hand, the variability of the C-O and C-N distances is related to the strength of the interactions between the lone pair of the N atom and the C-O π* system, which is modulated by the ψ angle. The C-O and C-N distances are related but their trends are not strictly connected to peptide-bond planarity, although a correlation amongst all of these parameters is expected on the basis of the classical resonance model. </p>\",\"PeriodicalId\":7047,\"journal\":{\"name\":\"Acta crystallographica. Section D, Biological crystallography\",\"volume\":\"71 Pt 6\",\"pages\":\"1272-83\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1107/S1399004715005507\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta crystallographica. Section D, Biological crystallography\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1107/S1399004715005507\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2015/5/14 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta crystallographica. Section D, Biological crystallography","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1107/S1399004715005507","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2015/5/14 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

通过结合小模型肽的量子力学分析和高分辨率蛋白质结构的统计调查,揭示了多肽主干键长度的系统构象依赖性,包括肽键(C- o和C- n)和以C(α)原子为中心的键。根据蛋白质结构的计算和调查,所有这些键长确实显示出ψ角的系统性变化。计算数据和统计数据之间的总体一致表明,这些趋势基本上是由局部效应驱动的。C(α)距离对ψ的依赖是由C(α)部分的σ系统和肽键的C- o π系统之间的相互作用决定的。每个键距离的最大值和最小值分别为与相邻CONH肽面垂直和平行的特定键构象。另一方面,C-O和C-N距离的变化与N原子的孤对与C-O π*体系之间的相互作用强度有关,这种相互作用强度由ψ角调制。C-O和C-N距离是相关的,但它们的趋势与肽键平面度没有严格联系,尽管在经典共振模型的基础上,所有这些参数之间都有相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Bond distances in polypeptide backbones depend on the local conformation.

By combining quantum-mechanical analysis of small model peptides and statistical surveys of high-resolution protein structures, a systematic conformational dependence of bond lengths in polypeptide backbones has been unveiled which involves both the peptide bond (C-O and C-N) and those bonds centred on the C(α) atom. All of these bond lengths indeed display a systematic variability in the ψ angle according to both calculations and surveys of protein structures. The overall agreement between the computed and the statistical data suggests that these trends are essentially driven by local effects. The dependence of C(α) distances on ψ is governed by interactions between the σ system of the C(α) moiety and the C-O π system of the peptide bond. Maximum and minimum values for each bond distance are found for conformations with the specific bond perpendicular and parallel to the adjacent CONH peptide plane, respectively. On the other hand, the variability of the C-O and C-N distances is related to the strength of the interactions between the lone pair of the N atom and the C-O π* system, which is modulated by the ψ angle. The C-O and C-N distances are related but their trends are not strictly connected to peptide-bond planarity, although a correlation amongst all of these parameters is expected on the basis of the classical resonance model.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Complete epitopes for vaccine design derived from a crystal structure of the broadly neutralizing antibodies PGT128 and 8ANC195 in complex with an HIV-1 Env trimer. Structure of RC1339/APRc from Rickettsia conorii, a retropepsin-like aspartic protease. The novel double-folded structure of d(GCATGCATGC): a possible model for triplet-repeat sequences. Structural basis for amino-acid recognition and transmembrane signalling by tandem Per-Arnt-Sim (tandem PAS) chemoreceptor sensory domains. Structure determination of uracil-DNA N-glycosylase from Deinococcus radiodurans in complex with DNA.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1