{"title":"不完全不对称:有丝分裂过程中受损细胞成分的不对称分配机制。","authors":"Sundararaghavan Pattabiraman, Daniel Kaganovich","doi":"10.1080/19490992.2015.1014213","DOIUrl":null,"url":null,"abstract":"<p><p>Aging is universally associated with organism-wide dysfunction and a decline in cellular fitness. From early development onwards, the efficiency of self-repair, energy production, and homeostasis all decrease. Due to the multiplicity of systems that undergo agingrelated decline, the mechanistic basis of organismal aging has been difficult to pinpoint. At the cellular level, however, recent work has provided important insight. Cellular aging is associated with the accumulation of several types of damage, in particular damage to the proteome and organelles. Groundbreaking studies have shown that replicative aging is the result of a rejuvenation mechanism that prevents the inheritance of damaged components during division, thereby confining the effects of aging to specific cells, while removing damage from others. Asymmetric inheritance of misfolded and aggregated proteins, as well as reduced mitochondria, has been shown in yeast. Until recently, however, it was not clear whether a similar mechanism operates in mammalian cells, which were thought to mostly divide symmetrically. Our group has recently shown that vimentin establishes mitotic polarity in immortalized mammalian cells, and mediates asymmetric partitioning of multiple factors through direct interaction. These findings prompt a provocative hypothesis: that intermediate filaments serve as asymmetric partitioning modules or \"sponges\" that, when expressed prior to mitosis, can \"clean\" emerging cells of the damage they have accumulated. </p>","PeriodicalId":89329,"journal":{"name":"Bioarchitecture","volume":"4 6","pages":"203-9"},"PeriodicalIF":0.0000,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/19490992.2015.1014213","citationCount":"7","resultStr":"{\"title\":\"Imperfect asymmetry: The mechanism governing asymmetric partitioning of damaged cellular components during mitosis.\",\"authors\":\"Sundararaghavan Pattabiraman, Daniel Kaganovich\",\"doi\":\"10.1080/19490992.2015.1014213\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Aging is universally associated with organism-wide dysfunction and a decline in cellular fitness. From early development onwards, the efficiency of self-repair, energy production, and homeostasis all decrease. Due to the multiplicity of systems that undergo agingrelated decline, the mechanistic basis of organismal aging has been difficult to pinpoint. At the cellular level, however, recent work has provided important insight. Cellular aging is associated with the accumulation of several types of damage, in particular damage to the proteome and organelles. Groundbreaking studies have shown that replicative aging is the result of a rejuvenation mechanism that prevents the inheritance of damaged components during division, thereby confining the effects of aging to specific cells, while removing damage from others. Asymmetric inheritance of misfolded and aggregated proteins, as well as reduced mitochondria, has been shown in yeast. Until recently, however, it was not clear whether a similar mechanism operates in mammalian cells, which were thought to mostly divide symmetrically. Our group has recently shown that vimentin establishes mitotic polarity in immortalized mammalian cells, and mediates asymmetric partitioning of multiple factors through direct interaction. These findings prompt a provocative hypothesis: that intermediate filaments serve as asymmetric partitioning modules or \\\"sponges\\\" that, when expressed prior to mitosis, can \\\"clean\\\" emerging cells of the damage they have accumulated. </p>\",\"PeriodicalId\":89329,\"journal\":{\"name\":\"Bioarchitecture\",\"volume\":\"4 6\",\"pages\":\"203-9\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/19490992.2015.1014213\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioarchitecture\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/19490992.2015.1014213\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2015/5/5 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioarchitecture","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/19490992.2015.1014213","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2015/5/5 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
Imperfect asymmetry: The mechanism governing asymmetric partitioning of damaged cellular components during mitosis.
Aging is universally associated with organism-wide dysfunction and a decline in cellular fitness. From early development onwards, the efficiency of self-repair, energy production, and homeostasis all decrease. Due to the multiplicity of systems that undergo agingrelated decline, the mechanistic basis of organismal aging has been difficult to pinpoint. At the cellular level, however, recent work has provided important insight. Cellular aging is associated with the accumulation of several types of damage, in particular damage to the proteome and organelles. Groundbreaking studies have shown that replicative aging is the result of a rejuvenation mechanism that prevents the inheritance of damaged components during division, thereby confining the effects of aging to specific cells, while removing damage from others. Asymmetric inheritance of misfolded and aggregated proteins, as well as reduced mitochondria, has been shown in yeast. Until recently, however, it was not clear whether a similar mechanism operates in mammalian cells, which were thought to mostly divide symmetrically. Our group has recently shown that vimentin establishes mitotic polarity in immortalized mammalian cells, and mediates asymmetric partitioning of multiple factors through direct interaction. These findings prompt a provocative hypothesis: that intermediate filaments serve as asymmetric partitioning modules or "sponges" that, when expressed prior to mitosis, can "clean" emerging cells of the damage they have accumulated.