2',6'-二甲基苯丙氨酸:阿片肽中tyr或phe残基的有用芳香氨基酸替代物。

International Journal of Medicinal Chemistry Pub Date : 2012-01-01 Epub Date: 2012-04-04 DOI:10.1155/2012/498901
Yusuke Sasaki, Akihiro Ambo
{"title":"2',6'-二甲基苯丙氨酸:阿片肽中tyr或phe残基的有用芳香氨基酸替代物。","authors":"Yusuke Sasaki,&nbsp;Akihiro Ambo","doi":"10.1155/2012/498901","DOIUrl":null,"url":null,"abstract":"<p><p>Two aromatic amino acids, Tyr(1) and Phe(3) or Phe(4), are important structural elements in opioid peptides because they interact with opioid receptors. The usefulness of an artificial amino acid residue 2',6'-dimethylphenylalanine (Dmp) was investigated as an aromatic amino acid surrogate for several opioid peptides, including enkephalin, dermorphin, deltorphin, endomorphin, dynorphin A, and nociceptin peptides. In most peptides, substitutions of Phe(3) by a Dmp residue produced analogs with improved receptor-binding affinity and selectivity, while the same substitution of Phe(4) induced markedly reduced receptor affinity and selectivity. Interestingly, replacement of Tyr(1) by Dmp produced analogs with unexpectedly high affinity or produced only a slight drop in receptor affinity and bioactivity for most peptides. Thus, Dmp is also a useful surrogate for the N-terminal Tyr residue in opioid peptides despite the lack of a phenolic hydroxyl group, which is considered necessary for opioid activity. The Dmp(1)-substituted analogs are superior to 2',6'-dimethyltyrosine (Dmt)(1)-substituted analogs for high receptor selectivity since the latter generally have poor receptor selectivity. Thus, Dmp is very useful as an aromatic amino acid surrogate in opioid peptides and may be useful for developing other novel peptide mimetics with high receptor specificity. </p>","PeriodicalId":14082,"journal":{"name":"International Journal of Medicinal Chemistry","volume":"2012 ","pages":"498901"},"PeriodicalIF":0.0000,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2012/498901","citationCount":"3","resultStr":"{\"title\":\"2',6'-dimethylphenylalanine: a useful aromatic amino Acid surrogate for tyr or phe residue in opioid peptides.\",\"authors\":\"Yusuke Sasaki,&nbsp;Akihiro Ambo\",\"doi\":\"10.1155/2012/498901\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Two aromatic amino acids, Tyr(1) and Phe(3) or Phe(4), are important structural elements in opioid peptides because they interact with opioid receptors. The usefulness of an artificial amino acid residue 2',6'-dimethylphenylalanine (Dmp) was investigated as an aromatic amino acid surrogate for several opioid peptides, including enkephalin, dermorphin, deltorphin, endomorphin, dynorphin A, and nociceptin peptides. In most peptides, substitutions of Phe(3) by a Dmp residue produced analogs with improved receptor-binding affinity and selectivity, while the same substitution of Phe(4) induced markedly reduced receptor affinity and selectivity. Interestingly, replacement of Tyr(1) by Dmp produced analogs with unexpectedly high affinity or produced only a slight drop in receptor affinity and bioactivity for most peptides. Thus, Dmp is also a useful surrogate for the N-terminal Tyr residue in opioid peptides despite the lack of a phenolic hydroxyl group, which is considered necessary for opioid activity. The Dmp(1)-substituted analogs are superior to 2',6'-dimethyltyrosine (Dmt)(1)-substituted analogs for high receptor selectivity since the latter generally have poor receptor selectivity. Thus, Dmp is very useful as an aromatic amino acid surrogate in opioid peptides and may be useful for developing other novel peptide mimetics with high receptor specificity. </p>\",\"PeriodicalId\":14082,\"journal\":{\"name\":\"International Journal of Medicinal Chemistry\",\"volume\":\"2012 \",\"pages\":\"498901\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1155/2012/498901\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Medicinal Chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2012/498901\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2012/4/4 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Medicinal Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2012/498901","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2012/4/4 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

两种芳香氨基酸Tyr(1)和Phe(3)或Phe(4)是阿片肽的重要结构元素,因为它们与阿片受体相互作用。研究了人工氨基酸残基2',6'-二甲基苯基丙氨酸(Dmp)作为几种阿片肽(包括脑啡肽、dermorphin、deltorphin、endoomorphin、dynorphin A和nociceptin肽)的芳香氨基酸替代物的有效性。在大多数多肽中,用Dmp残基取代Phe(3)产生的类似物具有更好的受体结合亲和力和选择性,而同样的替换Phe(4)会显著降低受体亲和力和选择性。有趣的是,用Dmp替代Tyr(1)产生的类似物具有出乎意料的高亲和力,或者对大多数肽只产生轻微的受体亲和力和生物活性下降。因此,Dmp也是阿片肽n端Tyr残基的有用替代品,尽管缺乏酚羟基,而酚羟基被认为是阿片活性所必需的。Dmp(1)-取代类似物在高受体选择性方面优于2',6'-二甲基酪氨酸(Dmt)(1)-取代类似物,因为后者通常具有较差的受体选择性。因此,Dmp作为阿片肽的芳香氨基酸替代物是非常有用的,并且可能有助于开发其他具有高受体特异性的新型肽模拟物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
2',6'-dimethylphenylalanine: a useful aromatic amino Acid surrogate for tyr or phe residue in opioid peptides.

Two aromatic amino acids, Tyr(1) and Phe(3) or Phe(4), are important structural elements in opioid peptides because they interact with opioid receptors. The usefulness of an artificial amino acid residue 2',6'-dimethylphenylalanine (Dmp) was investigated as an aromatic amino acid surrogate for several opioid peptides, including enkephalin, dermorphin, deltorphin, endomorphin, dynorphin A, and nociceptin peptides. In most peptides, substitutions of Phe(3) by a Dmp residue produced analogs with improved receptor-binding affinity and selectivity, while the same substitution of Phe(4) induced markedly reduced receptor affinity and selectivity. Interestingly, replacement of Tyr(1) by Dmp produced analogs with unexpectedly high affinity or produced only a slight drop in receptor affinity and bioactivity for most peptides. Thus, Dmp is also a useful surrogate for the N-terminal Tyr residue in opioid peptides despite the lack of a phenolic hydroxyl group, which is considered necessary for opioid activity. The Dmp(1)-substituted analogs are superior to 2',6'-dimethyltyrosine (Dmt)(1)-substituted analogs for high receptor selectivity since the latter generally have poor receptor selectivity. Thus, Dmp is very useful as an aromatic amino acid surrogate in opioid peptides and may be useful for developing other novel peptide mimetics with high receptor specificity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊介绍: International Journal of Medicinal Chemistry is a peer-reviewed, Open Access journal that publishes original research articles as well as review articles in all areas of chemistry associated with drug discovery, design, and synthesis. International Journal of Medicinal Chemistry is a peer-reviewed, Open Access journal that publishes original research articles as well as review articles in all areas of chemistry associated with drug discovery, design, and synthesis.
期刊最新文献
Hair Growth Promoting Effect of Dicerocaryum senecioides Phytochemicals. Caffeates and Caffeamides: Synthetic Methodologies and Their Antioxidant Properties Evaluation of the Molecular State of Piperine in Cyclodextrin Complexes by Near-Infrared Spectroscopy and Solid-State Fluorescence Measurements. Synthesis and Evaluation of Baylis-Hillman Reaction Derived Imidazole and Triazole Cinnamates as Antifungal Agents. Crystallography and Its Impact on Carbonic Anhydrase Research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1