{"title":"基因表达、稳态与染色体结构。","authors":"Aswin Sai Narain Seshasayee","doi":"10.1080/19490992.2015.1040213","DOIUrl":null,"url":null,"abstract":"<p><p>In rapidly growing populations of bacterial cells, including those of the model organism Escherichia coli, genes essential for growth--such as those involved in protein synthesis--are expressed at high levels; this is in contrast to many horizontally-acquired genes, which are maintained at low transcriptional levels. (1) This balance in gene expression states between 2 distinct classes of genes is established by a galaxy of transcriptional regulators, including the so-called nucleoid associated proteins (NAP) that contribute to shaping the chromosome. (2) Besides these active players in gene regulation, it is not too far-fetched to anticipate that genome organization in terms of how genes are arranged on the chromosome, (3) which is the result of long-drawn transactions among genome rearrangement processes and selection, and the manner in which it is structured inside the cell, plays a role in establishing this balance. A recent study from our group has contributed to the literature investigating the interplay between global transcriptional regulators and genome organization in establishing gene expression homeostasis. (4) In particular, we address a triangle of functional interactions among genome organization, gene expression homeostasis and horizontal gene transfer.</p>","PeriodicalId":89329,"journal":{"name":"Bioarchitecture","volume":"4 6","pages":"221-5"},"PeriodicalIF":0.0000,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/19490992.2015.1040213","citationCount":"6","resultStr":"{\"title\":\"Gene expression homeostasis and chromosome architecture.\",\"authors\":\"Aswin Sai Narain Seshasayee\",\"doi\":\"10.1080/19490992.2015.1040213\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In rapidly growing populations of bacterial cells, including those of the model organism Escherichia coli, genes essential for growth--such as those involved in protein synthesis--are expressed at high levels; this is in contrast to many horizontally-acquired genes, which are maintained at low transcriptional levels. (1) This balance in gene expression states between 2 distinct classes of genes is established by a galaxy of transcriptional regulators, including the so-called nucleoid associated proteins (NAP) that contribute to shaping the chromosome. (2) Besides these active players in gene regulation, it is not too far-fetched to anticipate that genome organization in terms of how genes are arranged on the chromosome, (3) which is the result of long-drawn transactions among genome rearrangement processes and selection, and the manner in which it is structured inside the cell, plays a role in establishing this balance. A recent study from our group has contributed to the literature investigating the interplay between global transcriptional regulators and genome organization in establishing gene expression homeostasis. (4) In particular, we address a triangle of functional interactions among genome organization, gene expression homeostasis and horizontal gene transfer.</p>\",\"PeriodicalId\":89329,\"journal\":{\"name\":\"Bioarchitecture\",\"volume\":\"4 6\",\"pages\":\"221-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/19490992.2015.1040213\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioarchitecture\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/19490992.2015.1040213\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2015/5/21 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioarchitecture","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/19490992.2015.1040213","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2015/5/21 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
Gene expression homeostasis and chromosome architecture.
In rapidly growing populations of bacterial cells, including those of the model organism Escherichia coli, genes essential for growth--such as those involved in protein synthesis--are expressed at high levels; this is in contrast to many horizontally-acquired genes, which are maintained at low transcriptional levels. (1) This balance in gene expression states between 2 distinct classes of genes is established by a galaxy of transcriptional regulators, including the so-called nucleoid associated proteins (NAP) that contribute to shaping the chromosome. (2) Besides these active players in gene regulation, it is not too far-fetched to anticipate that genome organization in terms of how genes are arranged on the chromosome, (3) which is the result of long-drawn transactions among genome rearrangement processes and selection, and the manner in which it is structured inside the cell, plays a role in establishing this balance. A recent study from our group has contributed to the literature investigating the interplay between global transcriptional regulators and genome organization in establishing gene expression homeostasis. (4) In particular, we address a triangle of functional interactions among genome organization, gene expression homeostasis and horizontal gene transfer.