{"title":"[5 -羟色胺和米安色林对大鼠大脑皮质膜肾上腺素能和毒蕈碱受体特异性[3H]配体结合动力学的变构效应]。","authors":"B N Manukhin, L A Nesterova","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>The effects of serotonin receptor activation (by serotonin) and inhibition (by mianserin) on the properties of the α1-, α2-adrenoreceptors, and muscarinic cholinergic receptors in subcellular membrane fractions from the rat cerebral cortex were studied. Experimental data on the kinetics of specific antagonists binding to adrenergic and muscarinic receptors were analyzed by graphical and mathematical methods. The results suggest the presence of allosteric (cross-talk) interaction. In the control, α1- and α2-adrenoreceptors were represented by a single pool, and muscarinic receptors, by two pools. Two pools of adrenoreceptors with different affinity were detected against the background of serotonin. It was found that mianserin induces the formation of two pools of only (α2-receptors and muscarinic receptors are represented by two pools differing in the main parameters, such as dissociation constants and adrenoreceptor concentrations, in the control and experimental groups. It was shown that the allosteric effect of serotonin and mianserin is manifested in the inhibition of muscarinic receptors. It was assumed that the adrenergic and cholinergic receptors exist as dimers. The interaction between the adrenergic, cholinergic, and serotonergic systems is likely to be implemented at the cell membrane level.</p>","PeriodicalId":77187,"journal":{"name":"Izvestiia Akademii nauk. Seriia biologicheskaia","volume":" ","pages":"169-79"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"[Allosteric effect of serotonin and mianserin on the kinetics of specific [3H]-ligand binding to adrenergic and muscarinic receptors in the rat cerebral cortex membranes].\",\"authors\":\"B N Manukhin, L A Nesterova\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The effects of serotonin receptor activation (by serotonin) and inhibition (by mianserin) on the properties of the α1-, α2-adrenoreceptors, and muscarinic cholinergic receptors in subcellular membrane fractions from the rat cerebral cortex were studied. Experimental data on the kinetics of specific antagonists binding to adrenergic and muscarinic receptors were analyzed by graphical and mathematical methods. The results suggest the presence of allosteric (cross-talk) interaction. In the control, α1- and α2-adrenoreceptors were represented by a single pool, and muscarinic receptors, by two pools. Two pools of adrenoreceptors with different affinity were detected against the background of serotonin. It was found that mianserin induces the formation of two pools of only (α2-receptors and muscarinic receptors are represented by two pools differing in the main parameters, such as dissociation constants and adrenoreceptor concentrations, in the control and experimental groups. It was shown that the allosteric effect of serotonin and mianserin is manifested in the inhibition of muscarinic receptors. It was assumed that the adrenergic and cholinergic receptors exist as dimers. The interaction between the adrenergic, cholinergic, and serotonergic systems is likely to be implemented at the cell membrane level.</p>\",\"PeriodicalId\":77187,\"journal\":{\"name\":\"Izvestiia Akademii nauk. Seriia biologicheskaia\",\"volume\":\" \",\"pages\":\"169-79\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Izvestiia Akademii nauk. Seriia biologicheskaia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Izvestiia Akademii nauk. Seriia biologicheskaia","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
[Allosteric effect of serotonin and mianserin on the kinetics of specific [3H]-ligand binding to adrenergic and muscarinic receptors in the rat cerebral cortex membranes].
The effects of serotonin receptor activation (by serotonin) and inhibition (by mianserin) on the properties of the α1-, α2-adrenoreceptors, and muscarinic cholinergic receptors in subcellular membrane fractions from the rat cerebral cortex were studied. Experimental data on the kinetics of specific antagonists binding to adrenergic and muscarinic receptors were analyzed by graphical and mathematical methods. The results suggest the presence of allosteric (cross-talk) interaction. In the control, α1- and α2-adrenoreceptors were represented by a single pool, and muscarinic receptors, by two pools. Two pools of adrenoreceptors with different affinity were detected against the background of serotonin. It was found that mianserin induces the formation of two pools of only (α2-receptors and muscarinic receptors are represented by two pools differing in the main parameters, such as dissociation constants and adrenoreceptor concentrations, in the control and experimental groups. It was shown that the allosteric effect of serotonin and mianserin is manifested in the inhibition of muscarinic receptors. It was assumed that the adrenergic and cholinergic receptors exist as dimers. The interaction between the adrenergic, cholinergic, and serotonergic systems is likely to be implemented at the cell membrane level.