时变数据集的探索性分析:医疗保健网络应用。

Narine Manukyan, Margaret J Eppstein, Jeffrey D Horbar, Kathleen A Leahy, Michael J Kenny, Shreya Mukherjee, Donna M Rizzo
{"title":"时变数据集的探索性分析:医疗保健网络应用。","authors":"Narine Manukyan,&nbsp;Margaret J Eppstein,&nbsp;Jeffrey D Horbar,&nbsp;Kathleen A Leahy,&nbsp;Michael J Kenny,&nbsp;Shreya Mukherjee,&nbsp;Donna M Rizzo","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>We introduce a new method for exploratory analysis of large data sets with time-varying features, where the aim is to automatically discover novel relationships between features (over some time period) that are predictive of any of a number of time-varying outcomes (over some other time period). Using a genetic algorithm, we co-evolve (i) a subset of predictive features, (ii) which attribute will be predicted (iii) the time period over which to assess the predictive features, and (iv) the time period over which to assess the predicted attribute. After validating the method on 15 synthetic test problems, we used the approach for exploratory analysis of a large healthcare network data set. We discovered a strong association, with 100% sensitivity, between hospital participation in multi-institutional quality improvement collaboratives during or before 2002, and changes in the risk-adjusted rates of mortality and morbidity observed after a 1-2 year lag. The proposed approach is a potentially powerful and general tool for exploratory analysis of a wide range of time-series data sets.</p>","PeriodicalId":90853,"journal":{"name":"International journal of advanced computer science","volume":"3 7","pages":"322-329"},"PeriodicalIF":0.0000,"publicationDate":"2013-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4319218/pdf/nihms627602.pdf","citationCount":"0","resultStr":"{\"title\":\"Exploratory Analysis in Time-Varying Data Sets: a Healthcare Network Application.\",\"authors\":\"Narine Manukyan,&nbsp;Margaret J Eppstein,&nbsp;Jeffrey D Horbar,&nbsp;Kathleen A Leahy,&nbsp;Michael J Kenny,&nbsp;Shreya Mukherjee,&nbsp;Donna M Rizzo\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We introduce a new method for exploratory analysis of large data sets with time-varying features, where the aim is to automatically discover novel relationships between features (over some time period) that are predictive of any of a number of time-varying outcomes (over some other time period). Using a genetic algorithm, we co-evolve (i) a subset of predictive features, (ii) which attribute will be predicted (iii) the time period over which to assess the predictive features, and (iv) the time period over which to assess the predicted attribute. After validating the method on 15 synthetic test problems, we used the approach for exploratory analysis of a large healthcare network data set. We discovered a strong association, with 100% sensitivity, between hospital participation in multi-institutional quality improvement collaboratives during or before 2002, and changes in the risk-adjusted rates of mortality and morbidity observed after a 1-2 year lag. The proposed approach is a potentially powerful and general tool for exploratory analysis of a wide range of time-series data sets.</p>\",\"PeriodicalId\":90853,\"journal\":{\"name\":\"International journal of advanced computer science\",\"volume\":\"3 7\",\"pages\":\"322-329\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4319218/pdf/nihms627602.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of advanced computer science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of advanced computer science","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们引入了一种新的方法,用于对具有时变特征的大型数据集进行探索性分析,其目的是自动发现特征之间的新关系(在一段时间内),这些特征可以预测任何一个时变结果(在其他一些时间段内)。使用遗传算法,我们共同进化(i)预测特征的子集,(ii)将预测哪个属性,(iii)评估预测特征的时间段,以及(iv)评估预测属性的时间段。在对15个综合测试问题验证了该方法之后,我们使用该方法对一个大型医疗保健网络数据集进行探索性分析。我们发现,2002年期间或之前参与多机构质量改进合作的医院与1-2年后观察到的风险调整死亡率和发病率的变化之间存在很强的关联,其敏感性为100%。所提出的方法是一种潜在的强大和通用的工具,用于广泛的时间序列数据集的探索性分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Exploratory Analysis in Time-Varying Data Sets: a Healthcare Network Application.

We introduce a new method for exploratory analysis of large data sets with time-varying features, where the aim is to automatically discover novel relationships between features (over some time period) that are predictive of any of a number of time-varying outcomes (over some other time period). Using a genetic algorithm, we co-evolve (i) a subset of predictive features, (ii) which attribute will be predicted (iii) the time period over which to assess the predictive features, and (iv) the time period over which to assess the predicted attribute. After validating the method on 15 synthetic test problems, we used the approach for exploratory analysis of a large healthcare network data set. We discovered a strong association, with 100% sensitivity, between hospital participation in multi-institutional quality improvement collaboratives during or before 2002, and changes in the risk-adjusted rates of mortality and morbidity observed after a 1-2 year lag. The proposed approach is a potentially powerful and general tool for exploratory analysis of a wide range of time-series data sets.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Comparison of Back Propagation, Long Short-Term Memory (LSTM), Attention-Based LSTM Neural Networks Application in Futures Market of China using R Programming Analysis of Different Methods for Measuring the Performance of Database on Cloud Environment A Study of Scheduling Algorithms to Maintain Small Overflow Probability in Cellular Networks with a Single Cell Karnaugh Map Approach for Mining Frequent Termset from Uncertain Textual Data Software Debugging By Developing and Comparing Very Close Successful Inputs with Failure Inducing Unsuccessful Inputs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1