水/有机双相体系中红球菌胆固醇氧化酶产胆-4-烯-3-酮的制备、纯化和鉴定

Biochemistry Insights Pub Date : 2015-02-16 eCollection Date: 2015-01-01 DOI:10.4137/BCI.S21580
Ke Wu, Wei Li, Jianrui Song, Tao Li
{"title":"水/有机双相体系中红球菌胆固醇氧化酶产胆-4-烯-3-酮的制备、纯化和鉴定","authors":"Ke Wu,&nbsp;Wei Li,&nbsp;Jianrui Song,&nbsp;Tao Li","doi":"10.4137/BCI.S21580","DOIUrl":null,"url":null,"abstract":"<p><p>Cholest-4-en-3-one has positive uses against obesity, liver disease, and keratinization. It can be applied in the synthesis of steroid drugs as well. Most related studies are focused on preparation of cholest-4-en-3-one by using whole cells as catalysts, but production of high-quality cholest-4-en-3-one directly from cholesterol oxidase (COD) using an aqueous/organic two-phase system has been rarely explored. This study set up an enzymatic reaction system to produce cholest-4-en-3-one. We developed and optimized the enzymatic reaction system using COD from COX5-6 (a strain of Rhodococcus) instead of whole-cell biocatalyst. This not only simplifies and accelerates the production but also benefits the subsequent separation and purification process. Through extraction, washing, evaporation, column chromatography, and recrystallization, we got cholest-4-en-3-one with purity of 99.78%, which was identified by nuclear magnetic resonance, mass spectroscopy, and infrared spectroscopy. In addition, this optimized process of cholest-4-en-3-one production and purification can be easily scaled up for industrial production, which can largely decrease the cost and guarantee the purity of the product. </p>","PeriodicalId":8791,"journal":{"name":"Biochemistry Insights","volume":"8 Suppl 1","pages":"1-8"},"PeriodicalIF":0.0000,"publicationDate":"2015-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4137/BCI.S21580","citationCount":"20","resultStr":"{\"title\":\"Production, Purification, and Identification of Cholest-4-en-3-one Produced by Cholesterol Oxidase from Rhodococcus sp. in Aqueous/Organic Biphasic System.\",\"authors\":\"Ke Wu,&nbsp;Wei Li,&nbsp;Jianrui Song,&nbsp;Tao Li\",\"doi\":\"10.4137/BCI.S21580\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cholest-4-en-3-one has positive uses against obesity, liver disease, and keratinization. It can be applied in the synthesis of steroid drugs as well. Most related studies are focused on preparation of cholest-4-en-3-one by using whole cells as catalysts, but production of high-quality cholest-4-en-3-one directly from cholesterol oxidase (COD) using an aqueous/organic two-phase system has been rarely explored. This study set up an enzymatic reaction system to produce cholest-4-en-3-one. We developed and optimized the enzymatic reaction system using COD from COX5-6 (a strain of Rhodococcus) instead of whole-cell biocatalyst. This not only simplifies and accelerates the production but also benefits the subsequent separation and purification process. Through extraction, washing, evaporation, column chromatography, and recrystallization, we got cholest-4-en-3-one with purity of 99.78%, which was identified by nuclear magnetic resonance, mass spectroscopy, and infrared spectroscopy. In addition, this optimized process of cholest-4-en-3-one production and purification can be easily scaled up for industrial production, which can largely decrease the cost and guarantee the purity of the product. </p>\",\"PeriodicalId\":8791,\"journal\":{\"name\":\"Biochemistry Insights\",\"volume\":\"8 Suppl 1\",\"pages\":\"1-8\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-02-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.4137/BCI.S21580\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochemistry Insights\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4137/BCI.S21580\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2015/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemistry Insights","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4137/BCI.S21580","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2015/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

胆固醇-4-烯-3- 1对肥胖、肝病和角化有积极作用。它也可应用于类固醇药物的合成。大多数相关研究都集中在以全细胞为催化剂制备胆甾醇-4-烯-3- 1上,但采用水/有机两相体系直接从胆固醇氧化酶(COD)中制备高质量胆甾醇-4-烯-3- 1的研究很少。本研究建立了酶法合成胆碱-4-烯-3- 1的体系。我们开发并优化了用COX5-6(一株红球菌)的COD代替全细胞生物催化剂的酶促反应体系。这不仅简化和加快了生产,而且有利于后续的分离和纯化过程。经提取、洗涤、蒸发、柱层析、重结晶等步骤,得到纯度为99.78%的胆甾醇-4-en-3- 1,经核磁共振、质谱、红外光谱鉴定。此外,优化后的胆甾醇-4-烯-3- 1的生产和纯化工艺易于规模化工业化生产,大大降低了成本,保证了产品的纯度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Production, Purification, and Identification of Cholest-4-en-3-one Produced by Cholesterol Oxidase from Rhodococcus sp. in Aqueous/Organic Biphasic System.

Cholest-4-en-3-one has positive uses against obesity, liver disease, and keratinization. It can be applied in the synthesis of steroid drugs as well. Most related studies are focused on preparation of cholest-4-en-3-one by using whole cells as catalysts, but production of high-quality cholest-4-en-3-one directly from cholesterol oxidase (COD) using an aqueous/organic two-phase system has been rarely explored. This study set up an enzymatic reaction system to produce cholest-4-en-3-one. We developed and optimized the enzymatic reaction system using COD from COX5-6 (a strain of Rhodococcus) instead of whole-cell biocatalyst. This not only simplifies and accelerates the production but also benefits the subsequent separation and purification process. Through extraction, washing, evaporation, column chromatography, and recrystallization, we got cholest-4-en-3-one with purity of 99.78%, which was identified by nuclear magnetic resonance, mass spectroscopy, and infrared spectroscopy. In addition, this optimized process of cholest-4-en-3-one production and purification can be easily scaled up for industrial production, which can largely decrease the cost and guarantee the purity of the product.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biochemistry Insights
Biochemistry Insights BIOCHEMISTRY & MOLECULAR BIOLOGY-
自引率
0.00%
发文量
0
期刊最新文献
A Solo Dance or a Tango? The Roles of N6-Methyladenosine in Human Diseases Aerococcus urinae and Globicatella sanguinis Persist in Polymicrobial Urethral Catheter Biofilms Examined in Longitudinal Profiles at the Proteomic Level. A High Creatine Kinase Concentration Might Be a Sign of McArdle Disease in Patient With Type 1 Diabetes The Role of Insulin-Like Growth Factors and Insulin-Like Growth Factor-Binding Proteins in the Nervous System.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1