Botometer 101:计算社会科学家的社交机器人实践。

IF 2 Q2 SOCIAL SCIENCES, MATHEMATICAL METHODS Journal of Computational Social Science Pub Date : 2022-01-01 Epub Date: 2022-08-20 DOI:10.1007/s42001-022-00177-5
Kai-Cheng Yang, Emilio Ferrara, Filippo Menczer
{"title":"Botometer 101:计算社会科学家的社交机器人实践。","authors":"Kai-Cheng Yang, Emilio Ferrara, Filippo Menczer","doi":"10.1007/s42001-022-00177-5","DOIUrl":null,"url":null,"abstract":"<p><p>Social bots have become an important component of online social media. Deceptive bots, in particular, can manipulate online discussions of important issues ranging from elections to public health, threatening the constructive exchange of information. Their ubiquity makes them an interesting research subject and requires researchers to properly handle them when conducting studies using social media data. Therefore, it is important for researchers to gain access to bot detection tools that are reliable and easy to use. This paper aims to provide an introductory tutorial of Botometer, a public tool for bot detection on Twitter, for readers who are new to this topic and may not be familiar with programming and machine learning. We introduce how Botometer works, the different ways users can access it, and present a case study as a demonstration. Readers can use the case study code as a template for their own research. We also discuss recommended practice for using Botometer.</p>","PeriodicalId":29946,"journal":{"name":"Journal of Computational Social Science","volume":"5 2","pages":"1511-1528"},"PeriodicalIF":2.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9391657/pdf/","citationCount":"0","resultStr":"{\"title\":\"Botometer 101: social bot practicum for computational social scientists.\",\"authors\":\"Kai-Cheng Yang, Emilio Ferrara, Filippo Menczer\",\"doi\":\"10.1007/s42001-022-00177-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Social bots have become an important component of online social media. Deceptive bots, in particular, can manipulate online discussions of important issues ranging from elections to public health, threatening the constructive exchange of information. Their ubiquity makes them an interesting research subject and requires researchers to properly handle them when conducting studies using social media data. Therefore, it is important for researchers to gain access to bot detection tools that are reliable and easy to use. This paper aims to provide an introductory tutorial of Botometer, a public tool for bot detection on Twitter, for readers who are new to this topic and may not be familiar with programming and machine learning. We introduce how Botometer works, the different ways users can access it, and present a case study as a demonstration. Readers can use the case study code as a template for their own research. We also discuss recommended practice for using Botometer.</p>\",\"PeriodicalId\":29946,\"journal\":{\"name\":\"Journal of Computational Social Science\",\"volume\":\"5 2\",\"pages\":\"1511-1528\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9391657/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Social Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s42001-022-00177-5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/8/20 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"SOCIAL SCIENCES, MATHEMATICAL METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Social Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s42001-022-00177-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/8/20 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"SOCIAL SCIENCES, MATHEMATICAL METHODS","Score":null,"Total":0}
引用次数: 0

摘要

社交机器人已成为网络社交媒体的重要组成部分。尤其是欺骗性机器人,它们可以操纵从选举到公共卫生等重要问题的在线讨论,威胁到建设性的信息交流。它们的无处不在使其成为一个有趣的研究课题,并要求研究人员在使用社交媒体数据进行研究时妥善处理它们。因此,研究人员必须获得可靠、易用的僵尸检测工具。Botometer 是一款用于检测推特上僵尸的公共工具,本文旨在为初涉此话题且可能不熟悉编程和机器学习的读者提供有关 Botometer 的入门教程。我们介绍了 Botometer 的工作原理、用户访问 Botometer 的不同方式,并通过一个案例进行了演示。读者可以将案例研究代码作为自己研究的模板。我们还讨论了使用 Botometer 的推荐做法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Botometer 101: social bot practicum for computational social scientists.

Social bots have become an important component of online social media. Deceptive bots, in particular, can manipulate online discussions of important issues ranging from elections to public health, threatening the constructive exchange of information. Their ubiquity makes them an interesting research subject and requires researchers to properly handle them when conducting studies using social media data. Therefore, it is important for researchers to gain access to bot detection tools that are reliable and easy to use. This paper aims to provide an introductory tutorial of Botometer, a public tool for bot detection on Twitter, for readers who are new to this topic and may not be familiar with programming and machine learning. We introduce how Botometer works, the different ways users can access it, and present a case study as a demonstration. Readers can use the case study code as a template for their own research. We also discuss recommended practice for using Botometer.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Computational Social Science
Journal of Computational Social Science SOCIAL SCIENCES, MATHEMATICAL METHODS-
CiteScore
6.20
自引率
6.20%
发文量
30
期刊最新文献
Identifying the factors influencing the development of bilateral investment treaties with health safeguards: a Machine Learning-based link prediction approach. Open-source LLMs for text annotation: a practical guide for model setting and fine-tuning. Capitalizing on a crisis: a computational analysis of all five million British firms during the Covid-19 pandemic. Telegram channels covering Russia’s invasion of Ukraine: a comparative analysis of large multilingual corpora Fast meta-analytic approximations for relational event models: applications to data streams and multilevel data.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1