促进研究环境中的大数据管理。

Daniel Andresen, Gerrick Teague
{"title":"促进研究环境中的大数据管理。","authors":"Daniel Andresen,&nbsp;Gerrick Teague","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Research data management is becoming increasingly complex as the amount of data, metadata and code increases. Often, researchers must obtain multidisciplinary skills to acquire, transfer, share, and compute large datasets. In this paper we present the results of an investigation into providing a familiar web-based experience for researchers to manage their data and code, leveraging popular, well-funded tools and services. We show how researchers can save time and avoid mistakes, and we provide a detailed discussion of our system architecture and implementation, and summarize the new capabilities, and time savings which can be achieved.</p>","PeriodicalId":72112,"journal":{"name":"ADVCOMP ... the ... International Conference on Advanced Engineering Computing and Applications in Sciences","volume":" ","pages":"36-43"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9446462/pdf/nihms-1831850.pdf","citationCount":"0","resultStr":"{\"title\":\"Facilitating large data management in research contexts.\",\"authors\":\"Daniel Andresen,&nbsp;Gerrick Teague\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Research data management is becoming increasingly complex as the amount of data, metadata and code increases. Often, researchers must obtain multidisciplinary skills to acquire, transfer, share, and compute large datasets. In this paper we present the results of an investigation into providing a familiar web-based experience for researchers to manage their data and code, leveraging popular, well-funded tools and services. We show how researchers can save time and avoid mistakes, and we provide a detailed discussion of our system architecture and implementation, and summarize the new capabilities, and time savings which can be achieved.</p>\",\"PeriodicalId\":72112,\"journal\":{\"name\":\"ADVCOMP ... the ... International Conference on Advanced Engineering Computing and Applications in Sciences\",\"volume\":\" \",\"pages\":\"36-43\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9446462/pdf/nihms-1831850.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ADVCOMP ... the ... International Conference on Advanced Engineering Computing and Applications in Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/10/3 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ADVCOMP ... the ... International Conference on Advanced Engineering Computing and Applications in Sciences","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/10/3 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随着数据、元数据和代码数量的增加,研究数据管理变得越来越复杂。通常,研究人员必须获得多学科技能来获取、转移、共享和计算大型数据集。在本文中,我们展示了一项调查的结果,该调查旨在为研究人员提供一种熟悉的基于web的体验,以利用流行的、资金充足的工具和服务来管理他们的数据和代码。我们向研究人员展示了如何节省时间和避免错误,并详细讨论了我们的系统架构和实现,并总结了可以实现的新功能和节省的时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Facilitating large data management in research contexts.

Research data management is becoming increasingly complex as the amount of data, metadata and code increases. Often, researchers must obtain multidisciplinary skills to acquire, transfer, share, and compute large datasets. In this paper we present the results of an investigation into providing a familiar web-based experience for researchers to manage their data and code, leveraging popular, well-funded tools and services. We show how researchers can save time and avoid mistakes, and we provide a detailed discussion of our system architecture and implementation, and summarize the new capabilities, and time savings which can be achieved.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
AMPRO-HPCC: A Machine-Learning Tool for Predicting Resources on Slurm HPC Clusters. Facilitating large data management in research contexts. Message from the Program Chairs and Industry Panel Chairs Low-Complexity Encryption Algorithm Considering Energy Balance on Wireless Sensor Networks Building a Product Origins Tracking System Based on Blockchain and PoA Consensus Protocol
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1