一种基于人工智能的疼痛监测系统的开发,该系统使用袜子中的皮肤电导传感器。

IF 6.6 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE International Journal of Neural Systems Pub Date : 2022-10-01 Epub Date: 2022-09-09 DOI:10.1142/S0129065722500472
Helen Korving, Di Zhou, Huan Xiang, Paula Sterkenburg, Panos Markopoulos, Emilia Barakova
{"title":"一种基于人工智能的疼痛监测系统的开发,该系统使用袜子中的皮肤电导传感器。","authors":"Helen Korving,&nbsp;Di Zhou,&nbsp;Huan Xiang,&nbsp;Paula Sterkenburg,&nbsp;Panos Markopoulos,&nbsp;Emilia Barakova","doi":"10.1142/S0129065722500472","DOIUrl":null,"url":null,"abstract":"<p><p><i>Background</i>: Where self-report is unfeasible or observations are difficult, physiological estimates of pain are needed. <i>Methods</i>: Pain-data from 30 healthy adults were gathered to create a database of physiological pain responses. A model was then developed, to analyze pain-data and visualize the AI-estimated level of pain on a mobile app. <i>Results</i>: The initial low precision and F1-score of the pain classification algorithm were resolved by interpolating a percentage of similar data. <i>Discussion</i>: This system presents a novel approach to assess pain in noncommunicative people with the use of a sensor sock, AI predictor and mobile app. Performance analysis and the limitations of the AI algorithm are discussed.</p>","PeriodicalId":50305,"journal":{"name":"International Journal of Neural Systems","volume":"32 10","pages":"2250047"},"PeriodicalIF":6.6000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Development of an AI-Enabled System for Pain Monitoring Using Skin Conductance Sensoring in Socks.\",\"authors\":\"Helen Korving,&nbsp;Di Zhou,&nbsp;Huan Xiang,&nbsp;Paula Sterkenburg,&nbsp;Panos Markopoulos,&nbsp;Emilia Barakova\",\"doi\":\"10.1142/S0129065722500472\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><i>Background</i>: Where self-report is unfeasible or observations are difficult, physiological estimates of pain are needed. <i>Methods</i>: Pain-data from 30 healthy adults were gathered to create a database of physiological pain responses. A model was then developed, to analyze pain-data and visualize the AI-estimated level of pain on a mobile app. <i>Results</i>: The initial low precision and F1-score of the pain classification algorithm were resolved by interpolating a percentage of similar data. <i>Discussion</i>: This system presents a novel approach to assess pain in noncommunicative people with the use of a sensor sock, AI predictor and mobile app. Performance analysis and the limitations of the AI algorithm are discussed.</p>\",\"PeriodicalId\":50305,\"journal\":{\"name\":\"International Journal of Neural Systems\",\"volume\":\"32 10\",\"pages\":\"2250047\"},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2022-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Neural Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1142/S0129065722500472\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/9/9 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Neural Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1142/S0129065722500472","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/9/9 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 3

摘要

背景:在自我报告不可行或观察困难的情况下,需要对疼痛进行生理估计。方法:收集30名健康成人的疼痛数据,建立生理性疼痛反应数据库。然后开发了一个模型来分析疼痛数据,并在移动应用程序上可视化人工智能估计的疼痛水平。结果:通过插值一定百分比的相似数据,解决了疼痛分类算法最初的低精度和f1评分问题。讨论:该系统提出了一种使用传感器袜子、人工智能预测器和移动应用程序来评估非交流人群疼痛的新方法。讨论了性能分析和人工智能算法的局限性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Development of an AI-Enabled System for Pain Monitoring Using Skin Conductance Sensoring in Socks.

Background: Where self-report is unfeasible or observations are difficult, physiological estimates of pain are needed. Methods: Pain-data from 30 healthy adults were gathered to create a database of physiological pain responses. A model was then developed, to analyze pain-data and visualize the AI-estimated level of pain on a mobile app. Results: The initial low precision and F1-score of the pain classification algorithm were resolved by interpolating a percentage of similar data. Discussion: This system presents a novel approach to assess pain in noncommunicative people with the use of a sensor sock, AI predictor and mobile app. Performance analysis and the limitations of the AI algorithm are discussed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Neural Systems
International Journal of Neural Systems 工程技术-计算机:人工智能
CiteScore
11.30
自引率
28.80%
发文量
116
审稿时长
24 months
期刊介绍: The International Journal of Neural Systems is a monthly, rigorously peer-reviewed transdisciplinary journal focusing on information processing in both natural and artificial neural systems. Special interests include machine learning, computational neuroscience and neurology. The journal prioritizes innovative, high-impact articles spanning multiple fields, including neurosciences and computer science and engineering. It adopts an open-minded approach to this multidisciplinary field, serving as a platform for novel ideas and enhanced understanding of collective and cooperative phenomena in computationally capable systems.
期刊最新文献
Epileptic Seizure Detection with an End-to-end Temporal Convolutional Network and Bidirectional Long Short-Term Memory Model A graph-based neural approach to linear sum assignment problems Automated Quality Evaluation of Large-Scale Benchmark Datasets for Vision-Language Tasks sEMG-based Inter-Session Hand Gesture Recognition via Domain Adaptation with Locality Preserving and Maximum Margin Cultural Differences in the Assessment of Synthetic Voices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1