Fang Yan, Xin Hu, Long He, Kegang Jiao, Yanyan Hao, Jing Wang
{"title":"ADAM33沉默通过PI3K/AKT/mTOR通路抑制血管平滑肌细胞迁移和调节气道血管重构中细胞因子的分泌","authors":"Fang Yan, Xin Hu, Long He, Kegang Jiao, Yanyan Hao, Jing Wang","doi":"10.1155/2022/8437348","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Vascular smooth muscle cells (VSMCs) are highly involved in airway vascular remodeling in asthma.</p><p><strong>Objectives: </strong>This study aimed to investigate the mechanisms underlying the effects of a disintegrin and metalloproteinase-33 (ADAM33) gene on the migration capacity and inflammatory cytokine secretion of VSMCs.</p><p><strong>Methods: </strong>Human aortic smooth muscle cells (HASMCs) were transfected with lentiviral vectors carrying short hairpin RNA (shRNA) targeting ADAM33 or negative control vectors. The migration capacity of HASMCs was evaluated by a transwell assay. The levels of secreted inflammatory cytokines were measured using enzyme-linked immunosorbent assay (ELISA) kits. Reverse transcription-quantitative polymerase chain reaction and Western blot assays were performed to detect mRNA and protein expression levels.</p><p><strong>Results: </strong>Silencing of ADAM33 significantly inhibited the migration of HASMCs. The expression of tumor necrosis factor alpha (TNF-<i>α</i>) in the supernatant of HASMCs was decreased, while that of interferon gamma (IFN-<i>γ</i>) was increased after the transfection of shRNA targeting ADAM33. Insufficient ADAM33 expression also suppressed the expression levels of phosphatidylinositol 3-kinase (PI3K), phospho-protein kinase B (AKT), phospho-mammalian target of rapamycin (mTOR), Rho-associated protein kinases, phospho-forkhead box protein O1 (FOXO1), and cyclin D1, but it did not affect the levels of AKT, mTOR, or Rho.</p><p><strong>Conclusion: </strong>Silencing of the ADAM33 gene inhibited HASMC migration and regulated inflammatory cytokine secretion via targeting the PI3K/AKT/mTOR pathway and its downstream signaling. These data contribute to a better understanding of the regulatory mechanisms of airway vascular remodeling in asthma.</p>","PeriodicalId":9416,"journal":{"name":"Canadian respiratory journal","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2022-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9453083/pdf/","citationCount":"2","resultStr":"{\"title\":\"ADAM33 Silencing Inhibits Vascular Smooth Muscle Cell Migration and Regulates Cytokine Secretion in Airway Vascular Remodeling via the PI3K/AKT/mTOR Pathway.\",\"authors\":\"Fang Yan, Xin Hu, Long He, Kegang Jiao, Yanyan Hao, Jing Wang\",\"doi\":\"10.1155/2022/8437348\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>Vascular smooth muscle cells (VSMCs) are highly involved in airway vascular remodeling in asthma.</p><p><strong>Objectives: </strong>This study aimed to investigate the mechanisms underlying the effects of a disintegrin and metalloproteinase-33 (ADAM33) gene on the migration capacity and inflammatory cytokine secretion of VSMCs.</p><p><strong>Methods: </strong>Human aortic smooth muscle cells (HASMCs) were transfected with lentiviral vectors carrying short hairpin RNA (shRNA) targeting ADAM33 or negative control vectors. The migration capacity of HASMCs was evaluated by a transwell assay. The levels of secreted inflammatory cytokines were measured using enzyme-linked immunosorbent assay (ELISA) kits. Reverse transcription-quantitative polymerase chain reaction and Western blot assays were performed to detect mRNA and protein expression levels.</p><p><strong>Results: </strong>Silencing of ADAM33 significantly inhibited the migration of HASMCs. The expression of tumor necrosis factor alpha (TNF-<i>α</i>) in the supernatant of HASMCs was decreased, while that of interferon gamma (IFN-<i>γ</i>) was increased after the transfection of shRNA targeting ADAM33. Insufficient ADAM33 expression also suppressed the expression levels of phosphatidylinositol 3-kinase (PI3K), phospho-protein kinase B (AKT), phospho-mammalian target of rapamycin (mTOR), Rho-associated protein kinases, phospho-forkhead box protein O1 (FOXO1), and cyclin D1, but it did not affect the levels of AKT, mTOR, or Rho.</p><p><strong>Conclusion: </strong>Silencing of the ADAM33 gene inhibited HASMC migration and regulated inflammatory cytokine secretion via targeting the PI3K/AKT/mTOR pathway and its downstream signaling. These data contribute to a better understanding of the regulatory mechanisms of airway vascular remodeling in asthma.</p>\",\"PeriodicalId\":9416,\"journal\":{\"name\":\"Canadian respiratory journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2022-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9453083/pdf/\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Canadian respiratory journal\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1155/2022/8437348\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"RESPIRATORY SYSTEM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian respiratory journal","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1155/2022/8437348","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"RESPIRATORY SYSTEM","Score":null,"Total":0}
ADAM33 Silencing Inhibits Vascular Smooth Muscle Cell Migration and Regulates Cytokine Secretion in Airway Vascular Remodeling via the PI3K/AKT/mTOR Pathway.
Introduction: Vascular smooth muscle cells (VSMCs) are highly involved in airway vascular remodeling in asthma.
Objectives: This study aimed to investigate the mechanisms underlying the effects of a disintegrin and metalloproteinase-33 (ADAM33) gene on the migration capacity and inflammatory cytokine secretion of VSMCs.
Methods: Human aortic smooth muscle cells (HASMCs) were transfected with lentiviral vectors carrying short hairpin RNA (shRNA) targeting ADAM33 or negative control vectors. The migration capacity of HASMCs was evaluated by a transwell assay. The levels of secreted inflammatory cytokines were measured using enzyme-linked immunosorbent assay (ELISA) kits. Reverse transcription-quantitative polymerase chain reaction and Western blot assays were performed to detect mRNA and protein expression levels.
Results: Silencing of ADAM33 significantly inhibited the migration of HASMCs. The expression of tumor necrosis factor alpha (TNF-α) in the supernatant of HASMCs was decreased, while that of interferon gamma (IFN-γ) was increased after the transfection of shRNA targeting ADAM33. Insufficient ADAM33 expression also suppressed the expression levels of phosphatidylinositol 3-kinase (PI3K), phospho-protein kinase B (AKT), phospho-mammalian target of rapamycin (mTOR), Rho-associated protein kinases, phospho-forkhead box protein O1 (FOXO1), and cyclin D1, but it did not affect the levels of AKT, mTOR, or Rho.
Conclusion: Silencing of the ADAM33 gene inhibited HASMC migration and regulated inflammatory cytokine secretion via targeting the PI3K/AKT/mTOR pathway and its downstream signaling. These data contribute to a better understanding of the regulatory mechanisms of airway vascular remodeling in asthma.
期刊介绍:
Canadian Respiratory Journal is a peer-reviewed, Open Access journal that aims to provide a multidisciplinary forum for research in all areas of respiratory medicine. The journal publishes original research articles, review articles, and clinical studies related to asthma, allergy, COPD, non-invasive ventilation, therapeutic intervention, lung cancer, airway and lung infections, as well as any other respiratory diseases.