Frances Separovic , Vinzenz Hofferek , Anthony P. Duff , Malcom J. McConville , Marc-Antoine Sani
{"title":"细胞内DNP核磁共振揭示抗菌肽的多靶向作用","authors":"Frances Separovic , Vinzenz Hofferek , Anthony P. Duff , Malcom J. McConville , Marc-Antoine Sani","doi":"10.1016/j.yjsbx.2022.100074","DOIUrl":null,"url":null,"abstract":"<div><p>Dynamic nuclear polarization NMR spectroscopy was used to investigate the effect of the antimicrobial peptide (AMP) maculatin 1.1 on <em>E. coli</em> cells. The enhanced <sup>15</sup>N NMR signals from nucleic acids, proteins and lipids identified a number of unanticipated physiological responses to peptide stress, revealing that membrane-active AMPs can have a multi-target impact on <em>E. coli</em> cells. DNP-enhanced <sup>15</sup>N-observed <sup>31</sup>P-dephased REDOR NMR allowed monitoring how Mac1 induced DNA condensation and prevented intermolecular salt bridges between the main <em>E. coli</em> lipid phosphatidylethanolamine (PE) molecules. The latter was supported by similar results obtained using <em>E. coli</em> PE lipid systems. Overall, the ability to monitor the action of antimicrobial peptides <em>in situ</em> will provide greater insight into their mode of action.</p></div>","PeriodicalId":17238,"journal":{"name":"Journal of Structural Biology: X","volume":"6 ","pages":"Article 100074"},"PeriodicalIF":3.5000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/2c/60/main.PMC9486116.pdf","citationCount":"3","resultStr":"{\"title\":\"In-cell DNP NMR reveals multiple targeting effect of antimicrobial peptide\",\"authors\":\"Frances Separovic , Vinzenz Hofferek , Anthony P. Duff , Malcom J. McConville , Marc-Antoine Sani\",\"doi\":\"10.1016/j.yjsbx.2022.100074\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Dynamic nuclear polarization NMR spectroscopy was used to investigate the effect of the antimicrobial peptide (AMP) maculatin 1.1 on <em>E. coli</em> cells. The enhanced <sup>15</sup>N NMR signals from nucleic acids, proteins and lipids identified a number of unanticipated physiological responses to peptide stress, revealing that membrane-active AMPs can have a multi-target impact on <em>E. coli</em> cells. DNP-enhanced <sup>15</sup>N-observed <sup>31</sup>P-dephased REDOR NMR allowed monitoring how Mac1 induced DNA condensation and prevented intermolecular salt bridges between the main <em>E. coli</em> lipid phosphatidylethanolamine (PE) molecules. The latter was supported by similar results obtained using <em>E. coli</em> PE lipid systems. Overall, the ability to monitor the action of antimicrobial peptides <em>in situ</em> will provide greater insight into their mode of action.</p></div>\",\"PeriodicalId\":17238,\"journal\":{\"name\":\"Journal of Structural Biology: X\",\"volume\":\"6 \",\"pages\":\"Article 100074\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/2c/60/main.PMC9486116.pdf\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Structural Biology: X\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590152422000150\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Structural Biology: X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590152422000150","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
In-cell DNP NMR reveals multiple targeting effect of antimicrobial peptide
Dynamic nuclear polarization NMR spectroscopy was used to investigate the effect of the antimicrobial peptide (AMP) maculatin 1.1 on E. coli cells. The enhanced 15N NMR signals from nucleic acids, proteins and lipids identified a number of unanticipated physiological responses to peptide stress, revealing that membrane-active AMPs can have a multi-target impact on E. coli cells. DNP-enhanced 15N-observed 31P-dephased REDOR NMR allowed monitoring how Mac1 induced DNA condensation and prevented intermolecular salt bridges between the main E. coli lipid phosphatidylethanolamine (PE) molecules. The latter was supported by similar results obtained using E. coli PE lipid systems. Overall, the ability to monitor the action of antimicrobial peptides in situ will provide greater insight into their mode of action.