脂质膜模拟最佳实践[文章 v1.0]。

David J Smith, Jeffery B Klauda, Alexander J Sodt
{"title":"脂质膜模拟最佳实践[文章 v1.0]。","authors":"David J Smith, Jeffery B Klauda, Alexander J Sodt","doi":"10.33011/livecoms.1.1.5966","DOIUrl":null,"url":null,"abstract":"<p><p>We establish a reliable and robust standardization of settings for practical molecular dynamics (MD) simulations of pure and mixed (single- and multi-component) lipid bilayer membranes. In lipid membranes research, particle-based molecular simulations are a powerful tool alongside continuum theory, lipidomics, and model, <i>in vitro</i>, and <i>in vivo</i> experiments. Molecular simulations can provide precise and reproducible spatiotemporal (atomic- and femtosecond-level) information about membrane structure, mechanics, thermodynamics, kinetics, and dynamics. Yet the simulation of lipid membranes can be a daunting task, given the uniqueness of lipid membranes relative to conventional liquid-liquid and solid-liquid interfaces, the immense and complex thermodynamic and statistical mechanical theory, the diversity of multiscale lipid models, limitations of modern computing power, the difficulty and ambiguity of simulation controls, finite size effects, competitive continuum simulation alternatives, and the desired application, including vesicle experiments and biological membranes. These issues can complicate an essential understanding of the field of lipid membranes, and create major bottlenecks to simulation advancement. In this article, we clarify these issues and present a consistent, thorough, and user-friendly framework for the design of state-of-the-art lipid membrane MD simulations. We hope to allow early-career researchers to quickly overcome common obstacles in the field of lipid membranes and reach maximal impact in their simulations.</p>","PeriodicalId":74084,"journal":{"name":"Living journal of computational molecular science","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9534443/pdf/nihms-1799309.pdf","citationCount":"0","resultStr":"{\"title\":\"Simulation Best Practices for Lipid Membranes [Article v1.0].\",\"authors\":\"David J Smith, Jeffery B Klauda, Alexander J Sodt\",\"doi\":\"10.33011/livecoms.1.1.5966\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We establish a reliable and robust standardization of settings for practical molecular dynamics (MD) simulations of pure and mixed (single- and multi-component) lipid bilayer membranes. In lipid membranes research, particle-based molecular simulations are a powerful tool alongside continuum theory, lipidomics, and model, <i>in vitro</i>, and <i>in vivo</i> experiments. Molecular simulations can provide precise and reproducible spatiotemporal (atomic- and femtosecond-level) information about membrane structure, mechanics, thermodynamics, kinetics, and dynamics. Yet the simulation of lipid membranes can be a daunting task, given the uniqueness of lipid membranes relative to conventional liquid-liquid and solid-liquid interfaces, the immense and complex thermodynamic and statistical mechanical theory, the diversity of multiscale lipid models, limitations of modern computing power, the difficulty and ambiguity of simulation controls, finite size effects, competitive continuum simulation alternatives, and the desired application, including vesicle experiments and biological membranes. These issues can complicate an essential understanding of the field of lipid membranes, and create major bottlenecks to simulation advancement. In this article, we clarify these issues and present a consistent, thorough, and user-friendly framework for the design of state-of-the-art lipid membrane MD simulations. We hope to allow early-career researchers to quickly overcome common obstacles in the field of lipid membranes and reach maximal impact in their simulations.</p>\",\"PeriodicalId\":74084,\"journal\":{\"name\":\"Living journal of computational molecular science\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9534443/pdf/nihms-1799309.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Living journal of computational molecular science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33011/livecoms.1.1.5966\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Living journal of computational molecular science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33011/livecoms.1.1.5966","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们为纯脂和混合(单组分和多组分)脂质双层膜的实用分子动力学(MD)模拟建立了可靠、稳健的标准化设置。在脂质膜研究中,基于粒子的分子模拟是与连续理论、脂质组学、模型、体外和体内实验并驾齐驱的强大工具。分子模拟可提供有关膜结构、力学、热力学、动力学和动力学的精确且可重复的时空(原子级和飞秒级)信息。然而,考虑到脂膜相对于传统液-液和固-液界面的独特性、庞大而复杂的热力学和统计力学理论、多尺度脂质模型的多样性、现代计算能力的局限性、模拟控制的难度和模糊性、有限尺寸效应、具有竞争力的连续模拟替代方案以及所需的应用(包括囊泡实验和生物膜),脂膜模拟可能是一项艰巨的任务。这些问题会使对脂质膜领域的基本理解复杂化,并对模拟进步造成重大瓶颈。在本文中,我们将澄清这些问题,并为设计最先进的脂质膜 MD 模拟提出一个一致、全面和用户友好的框架。我们希望能让早期研究人员快速克服脂质膜领域的常见障碍,并在模拟中发挥最大影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Simulation Best Practices for Lipid Membranes [Article v1.0].

We establish a reliable and robust standardization of settings for practical molecular dynamics (MD) simulations of pure and mixed (single- and multi-component) lipid bilayer membranes. In lipid membranes research, particle-based molecular simulations are a powerful tool alongside continuum theory, lipidomics, and model, in vitro, and in vivo experiments. Molecular simulations can provide precise and reproducible spatiotemporal (atomic- and femtosecond-level) information about membrane structure, mechanics, thermodynamics, kinetics, and dynamics. Yet the simulation of lipid membranes can be a daunting task, given the uniqueness of lipid membranes relative to conventional liquid-liquid and solid-liquid interfaces, the immense and complex thermodynamic and statistical mechanical theory, the diversity of multiscale lipid models, limitations of modern computing power, the difficulty and ambiguity of simulation controls, finite size effects, competitive continuum simulation alternatives, and the desired application, including vesicle experiments and biological membranes. These issues can complicate an essential understanding of the field of lipid membranes, and create major bottlenecks to simulation advancement. In this article, we clarify these issues and present a consistent, thorough, and user-friendly framework for the design of state-of-the-art lipid membrane MD simulations. We hope to allow early-career researchers to quickly overcome common obstacles in the field of lipid membranes and reach maximal impact in their simulations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Suite of Tutorials for the WESTPA 2.0 Rare-Events Sampling Software [Article v2.0]. Computing absolute binding affinities by Streamlined Alchemical Free Energy Perturbation [Article v1.0] Deep Learning for Molecules and Materials. Enhanced Sampling Methods for Molecular Dynamics Simulations [Article v1.0] A Guide to the Continuous Constant pH Molecular Dynamics Methods in Amber and CHARMM [Article v1.0].
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1