Hojat Anbara, Mehdi Kian, Gholam-Hossein Darya, Mohammad Taghi Sheibani
{"title":"在小鼠模型中,长期摄入阿斯巴甜诱导的心血管毒性反映在组织化学参数的改变,引起氧化应激,并触发p53依赖性细胞凋亡","authors":"Hojat Anbara, Mehdi Kian, Gholam-Hossein Darya, Mohammad Taghi Sheibani","doi":"10.1111/iep.12458","DOIUrl":null,"url":null,"abstract":"<p>Aspartame (ASP) is probably the best known artificial sugar substitute that is used widely in food. Many experimental studies have reported the toxicity of long-term administration of ASP in various organ tissues. However, there is little evidence available about the nature and mechanisms of the adverse effects of long-term consumption of ASP on the cardiovascular system. This study was conducted to evaluate the possible effects of ASP on heart tissue. For this study 36 mature male mice were divided into one control group and three groups which received respectively 40 mg/kg, 80 mg/kg and 160 mg/kg ASP orally, for 90 days. ASP at the doses of 80 and 160 mg/kg increased the serum content of malondialdehyde (MDA), but decreased serum nitric oxide (NO), creatine kinase (CK) and CK-MB, as well as blood superoxide dismutase (SOD) levels. Serum level of total anti-oxidant capacity (TAC) in blood was also reduced in serum at the dose of 80 mg/kg. Histochemical staining, including Periodic acid-Schiff, Masson's trichrome and Verhoeff-van Gieson staining, indicated that ASP at doses of 80 and 160 mg/kg reduced glycogen deposition and decreased the number of collagen and elastic fibres in the cardiac tissue. The cardiac expression of pro-apoptotic genes, including P53, Bax, Bcl-2 and Caspase-3, was modulated at the dose of 160 mg/kg. Moreover, transcription of Caspase-3 was up-regulated at the dose of 80 mg/kg. In conclusion, long-term consumption of ASP any higher than the acceptable daily intake (40 mg/kg) appears to act by promoting oxidative stress, has the potential to alter both histopathological and biochemical parameters, and induces P53-dependent apoptosis in cardiac tissue.</p>","PeriodicalId":14157,"journal":{"name":"International Journal of Experimental Pathology","volume":"103 6","pages":"252-262"},"PeriodicalIF":1.8000,"publicationDate":"2022-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Long-term intake of aspartame-induced cardiovascular toxicity is reflected in altered histochemical parameters, evokes oxidative stress, and trigger P53-dependent apoptosis in a mouse model\",\"authors\":\"Hojat Anbara, Mehdi Kian, Gholam-Hossein Darya, Mohammad Taghi Sheibani\",\"doi\":\"10.1111/iep.12458\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Aspartame (ASP) is probably the best known artificial sugar substitute that is used widely in food. Many experimental studies have reported the toxicity of long-term administration of ASP in various organ tissues. However, there is little evidence available about the nature and mechanisms of the adverse effects of long-term consumption of ASP on the cardiovascular system. This study was conducted to evaluate the possible effects of ASP on heart tissue. For this study 36 mature male mice were divided into one control group and three groups which received respectively 40 mg/kg, 80 mg/kg and 160 mg/kg ASP orally, for 90 days. ASP at the doses of 80 and 160 mg/kg increased the serum content of malondialdehyde (MDA), but decreased serum nitric oxide (NO), creatine kinase (CK) and CK-MB, as well as blood superoxide dismutase (SOD) levels. Serum level of total anti-oxidant capacity (TAC) in blood was also reduced in serum at the dose of 80 mg/kg. Histochemical staining, including Periodic acid-Schiff, Masson's trichrome and Verhoeff-van Gieson staining, indicated that ASP at doses of 80 and 160 mg/kg reduced glycogen deposition and decreased the number of collagen and elastic fibres in the cardiac tissue. The cardiac expression of pro-apoptotic genes, including P53, Bax, Bcl-2 and Caspase-3, was modulated at the dose of 160 mg/kg. Moreover, transcription of Caspase-3 was up-regulated at the dose of 80 mg/kg. In conclusion, long-term consumption of ASP any higher than the acceptable daily intake (40 mg/kg) appears to act by promoting oxidative stress, has the potential to alter both histopathological and biochemical parameters, and induces P53-dependent apoptosis in cardiac tissue.</p>\",\"PeriodicalId\":14157,\"journal\":{\"name\":\"International Journal of Experimental Pathology\",\"volume\":\"103 6\",\"pages\":\"252-262\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2022-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Experimental Pathology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/iep.12458\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PATHOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Experimental Pathology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/iep.12458","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PATHOLOGY","Score":null,"Total":0}
Long-term intake of aspartame-induced cardiovascular toxicity is reflected in altered histochemical parameters, evokes oxidative stress, and trigger P53-dependent apoptosis in a mouse model
Aspartame (ASP) is probably the best known artificial sugar substitute that is used widely in food. Many experimental studies have reported the toxicity of long-term administration of ASP in various organ tissues. However, there is little evidence available about the nature and mechanisms of the adverse effects of long-term consumption of ASP on the cardiovascular system. This study was conducted to evaluate the possible effects of ASP on heart tissue. For this study 36 mature male mice were divided into one control group and three groups which received respectively 40 mg/kg, 80 mg/kg and 160 mg/kg ASP orally, for 90 days. ASP at the doses of 80 and 160 mg/kg increased the serum content of malondialdehyde (MDA), but decreased serum nitric oxide (NO), creatine kinase (CK) and CK-MB, as well as blood superoxide dismutase (SOD) levels. Serum level of total anti-oxidant capacity (TAC) in blood was also reduced in serum at the dose of 80 mg/kg. Histochemical staining, including Periodic acid-Schiff, Masson's trichrome and Verhoeff-van Gieson staining, indicated that ASP at doses of 80 and 160 mg/kg reduced glycogen deposition and decreased the number of collagen and elastic fibres in the cardiac tissue. The cardiac expression of pro-apoptotic genes, including P53, Bax, Bcl-2 and Caspase-3, was modulated at the dose of 160 mg/kg. Moreover, transcription of Caspase-3 was up-regulated at the dose of 80 mg/kg. In conclusion, long-term consumption of ASP any higher than the acceptable daily intake (40 mg/kg) appears to act by promoting oxidative stress, has the potential to alter both histopathological and biochemical parameters, and induces P53-dependent apoptosis in cardiac tissue.
期刊介绍:
Experimental Pathology encompasses the use of multidisciplinary scientific techniques to investigate the pathogenesis and progression of pathologic processes. The International Journal of Experimental Pathology - IJEP - publishes papers which afford new and imaginative insights into the basic mechanisms underlying human disease, including in vitro work, animal models, and clinical research.
Aiming to report on work that addresses the common theme of mechanism at a cellular and molecular level, IJEP publishes both original experimental investigations and review articles. Recent themes for review series have covered topics as diverse as "Viruses and Cancer", "Granulomatous Diseases", "Stem cells" and "Cardiovascular Pathology".