{"title":"金黄色葡萄球菌反应调节因子SaeR的dna结合域结构。","authors":"Xiaojiao Fan, Xu Zhang, Yuwei Zhu, Liwen Niu, Maikun Teng, Baolin Sun, Xu Li","doi":"10.1107/S1399004715010287","DOIUrl":null,"url":null,"abstract":"<p><p>The SaeR/S two-component regulatory system is essential for controlling the expression of many virulence factors in Staphylococcus aureus. SaeR, a member of the OmpR/PhoB family, is a response regulator with an N-terminal regulatory domain and a C-terminal DNA-binding domain. In order to elucidate how SaeR binds to the promoter regions of target genes, the crystal structure of the DNA-binding domain of SaeR (SaeR(DBD)) was solved at 2.5 Å resolution. The structure reveals that SaeR(DBD) exists as a monomer and has the canonical winged helix-turn-helix module. EMSA experiments suggested that full-length SaeR can bind to the P1 promoter and that the binding affinity is higher than that of its C-terminal DNA-binding domain. Five key residues on the winged helix-turn-helix module were verified to be important for binding to the P1 promoter in vitro and for the physiological function of SaeR in vivo.</p>","PeriodicalId":7047,"journal":{"name":"Acta crystallographica. Section D, Biological crystallography","volume":"71 Pt 8","pages":"1768-76"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1107/S1399004715010287","citationCount":"10","resultStr":"{\"title\":\"Structure of the DNA-binding domain of the response regulator SaeR from Staphylococcus aureus.\",\"authors\":\"Xiaojiao Fan, Xu Zhang, Yuwei Zhu, Liwen Niu, Maikun Teng, Baolin Sun, Xu Li\",\"doi\":\"10.1107/S1399004715010287\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The SaeR/S two-component regulatory system is essential for controlling the expression of many virulence factors in Staphylococcus aureus. SaeR, a member of the OmpR/PhoB family, is a response regulator with an N-terminal regulatory domain and a C-terminal DNA-binding domain. In order to elucidate how SaeR binds to the promoter regions of target genes, the crystal structure of the DNA-binding domain of SaeR (SaeR(DBD)) was solved at 2.5 Å resolution. The structure reveals that SaeR(DBD) exists as a monomer and has the canonical winged helix-turn-helix module. EMSA experiments suggested that full-length SaeR can bind to the P1 promoter and that the binding affinity is higher than that of its C-terminal DNA-binding domain. Five key residues on the winged helix-turn-helix module were verified to be important for binding to the P1 promoter in vitro and for the physiological function of SaeR in vivo.</p>\",\"PeriodicalId\":7047,\"journal\":{\"name\":\"Acta crystallographica. Section D, Biological crystallography\",\"volume\":\"71 Pt 8\",\"pages\":\"1768-76\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1107/S1399004715010287\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta crystallographica. Section D, Biological crystallography\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1107/S1399004715010287\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2015/7/31 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta crystallographica. Section D, Biological crystallography","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1107/S1399004715010287","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2015/7/31 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
Structure of the DNA-binding domain of the response regulator SaeR from Staphylococcus aureus.
The SaeR/S two-component regulatory system is essential for controlling the expression of many virulence factors in Staphylococcus aureus. SaeR, a member of the OmpR/PhoB family, is a response regulator with an N-terminal regulatory domain and a C-terminal DNA-binding domain. In order to elucidate how SaeR binds to the promoter regions of target genes, the crystal structure of the DNA-binding domain of SaeR (SaeR(DBD)) was solved at 2.5 Å resolution. The structure reveals that SaeR(DBD) exists as a monomer and has the canonical winged helix-turn-helix module. EMSA experiments suggested that full-length SaeR can bind to the P1 promoter and that the binding affinity is higher than that of its C-terminal DNA-binding domain. Five key residues on the winged helix-turn-helix module were verified to be important for binding to the P1 promoter in vitro and for the physiological function of SaeR in vivo.