外科ICU患者持续输注美罗培南的人群药代动力学。

IF 2.9 4区 医学 Journal of Clinical Pharmacology Pub Date : 2016-03-01 Epub Date: 2015-09-18 DOI:10.1002/jcph.600
Martin G Kees, Iris K Minichmayr, Stefan Moritz, Stefanie Beck, Sebastian G Wicha, Frieder Kees, Charlotte Kloft, Thomas Steinke
{"title":"外科ICU患者持续输注美罗培南的人群药代动力学。","authors":"Martin G Kees,&nbsp;Iris K Minichmayr,&nbsp;Stefan Moritz,&nbsp;Stefanie Beck,&nbsp;Sebastian G Wicha,&nbsp;Frieder Kees,&nbsp;Charlotte Kloft,&nbsp;Thomas Steinke","doi":"10.1002/jcph.600","DOIUrl":null,"url":null,"abstract":"<p><p>Continuous infusion of meropenem is a candidate strategy for optimization of its pharmacokinetic/pharmacodynamic profile. However, plasma concentrations are difficult to predict in critically ill patients. Steady-state concentrations of meropenem were determined prospectively during continuous infusion in 32 surgical ICU patients (aged 21-85 years, body weight 55-125 kg, APACHE II 5-29, measured creatinine clearance 22.7-297 mL/min). Urine was collected for the quantification of renal clearance of meropenem and creatinine. Cystatin C was measured as an additional marker of renal function. Population pharmacokinetic models were developed using NONMEM(®) , which described total meropenem clearance and its relationship with several estimates of renal function (measured creatinine clearance CLCR , Cockcroft-Gault formula CLCG , Hoek formula, 1/plasma creatinine, 1/plasma cystatin C) and other patient characteristics. Any estimate of renal function improved the model performance. The strongest association of clearance was found with CLCR (typical clearance = 11.3 L/h × [1 + 0.00932 × (CLCR  - 80 mL/min)]), followed by 1/plasma cystatin C; CLCG was the least predictive covariate. Neither age, weight, nor sex was found to be significant. These models can be used to predict dosing requirements or meropenem concentrations during continuous infusion. The covariate CLCR offers the best predictive performance; if not available, cystatin C may provide a promising alternative to plasma creatinine. </p>","PeriodicalId":48908,"journal":{"name":"Journal of Clinical Pharmacology","volume":"56 3","pages":"307-15"},"PeriodicalIF":2.9000,"publicationDate":"2016-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/jcph.600","citationCount":"36","resultStr":"{\"title\":\"Population pharmacokinetics of meropenem during continuous infusion in surgical ICU patients.\",\"authors\":\"Martin G Kees,&nbsp;Iris K Minichmayr,&nbsp;Stefan Moritz,&nbsp;Stefanie Beck,&nbsp;Sebastian G Wicha,&nbsp;Frieder Kees,&nbsp;Charlotte Kloft,&nbsp;Thomas Steinke\",\"doi\":\"10.1002/jcph.600\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Continuous infusion of meropenem is a candidate strategy for optimization of its pharmacokinetic/pharmacodynamic profile. However, plasma concentrations are difficult to predict in critically ill patients. Steady-state concentrations of meropenem were determined prospectively during continuous infusion in 32 surgical ICU patients (aged 21-85 years, body weight 55-125 kg, APACHE II 5-29, measured creatinine clearance 22.7-297 mL/min). Urine was collected for the quantification of renal clearance of meropenem and creatinine. Cystatin C was measured as an additional marker of renal function. Population pharmacokinetic models were developed using NONMEM(®) , which described total meropenem clearance and its relationship with several estimates of renal function (measured creatinine clearance CLCR , Cockcroft-Gault formula CLCG , Hoek formula, 1/plasma creatinine, 1/plasma cystatin C) and other patient characteristics. Any estimate of renal function improved the model performance. The strongest association of clearance was found with CLCR (typical clearance = 11.3 L/h × [1 + 0.00932 × (CLCR  - 80 mL/min)]), followed by 1/plasma cystatin C; CLCG was the least predictive covariate. Neither age, weight, nor sex was found to be significant. These models can be used to predict dosing requirements or meropenem concentrations during continuous infusion. The covariate CLCR offers the best predictive performance; if not available, cystatin C may provide a promising alternative to plasma creatinine. </p>\",\"PeriodicalId\":48908,\"journal\":{\"name\":\"Journal of Clinical Pharmacology\",\"volume\":\"56 3\",\"pages\":\"307-15\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2016-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1002/jcph.600\",\"citationCount\":\"36\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Clinical Pharmacology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/jcph.600\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2015/9/18 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Clinical Pharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/jcph.600","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2015/9/18 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 36

摘要

持续输注美罗培南是优化其药代动力学/药效学特征的候选策略。然而,危重患者的血药浓度难以预测。对32例外科ICU患者(年龄21 ~ 85岁,体重55 ~ 125 kg, APACHEⅱ5 ~ 29岁,肌酐清除率22.7 ~ 297 mL/min)连续输注美罗培南的稳态浓度进行前瞻性测定。收集尿液定量测定美罗培南和肌酐的肾清除率。胱抑素C作为肾功能的附加指标进行测量。使用NONMEM(®)建立了人群药代动力学模型,该模型描述了美罗布南总清除率及其与肾功能的几种估计(测量肌酐清除率CLCR, Cockcroft-Gault公式CLCG, Hoek公式,1/血浆肌酐,1/血浆胱抑素C)和其他患者特征的关系。对肾功能的任何估计都能改善模型的性能。清除率与CLCR相关性最强(典型清除率= 11.3 L/h × [1 + 0.00932 × (CLCR - 80 mL/min)]),其次为1/血浆胱抑素C;CLCG是最不具预测性的协变量。年龄、体重和性别都无关紧要。这些模型可用于预测连续输注期间的剂量要求或美罗培南浓度。协变量CLCR预测效果最好;如果没有,胱抑素C可能是血浆肌酐的一个有希望的替代品。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Population pharmacokinetics of meropenem during continuous infusion in surgical ICU patients.

Continuous infusion of meropenem is a candidate strategy for optimization of its pharmacokinetic/pharmacodynamic profile. However, plasma concentrations are difficult to predict in critically ill patients. Steady-state concentrations of meropenem were determined prospectively during continuous infusion in 32 surgical ICU patients (aged 21-85 years, body weight 55-125 kg, APACHE II 5-29, measured creatinine clearance 22.7-297 mL/min). Urine was collected for the quantification of renal clearance of meropenem and creatinine. Cystatin C was measured as an additional marker of renal function. Population pharmacokinetic models were developed using NONMEM(®) , which described total meropenem clearance and its relationship with several estimates of renal function (measured creatinine clearance CLCR , Cockcroft-Gault formula CLCG , Hoek formula, 1/plasma creatinine, 1/plasma cystatin C) and other patient characteristics. Any estimate of renal function improved the model performance. The strongest association of clearance was found with CLCR (typical clearance = 11.3 L/h × [1 + 0.00932 × (CLCR  - 80 mL/min)]), followed by 1/plasma cystatin C; CLCG was the least predictive covariate. Neither age, weight, nor sex was found to be significant. These models can be used to predict dosing requirements or meropenem concentrations during continuous infusion. The covariate CLCR offers the best predictive performance; if not available, cystatin C may provide a promising alternative to plasma creatinine.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Clinical Pharmacology
Journal of Clinical Pharmacology PHARMACOLOGY & PHARMACY-
自引率
3.40%
发文量
0
期刊介绍: The Journal of Clinical Pharmacology (JCP) is a Human Pharmacology journal designed to provide physicians, pharmacists, research scientists, regulatory scientists, drug developers and academic colleagues a forum to present research in all aspects of Clinical Pharmacology. This includes original research in pharmacokinetics, pharmacogenetics/pharmacogenomics, pharmacometrics, physiologic based pharmacokinetic modeling, drug interactions, therapeutic drug monitoring, regulatory sciences (including unique methods of data analysis), special population studies, drug development, pharmacovigilance, womens’ health, pediatric pharmacology, and pharmacodynamics. Additionally, JCP publishes review articles, commentaries and educational manuscripts. The Journal also serves as an instrument to disseminate Public Policy statements from the American College of Clinical Pharmacology.
期刊最新文献
Effect of Hepatic Impairment on the Pharmacokinetics and Pharmacodynamics of SHR4640, a Selective Human Urate Transporter 1 Inhibitor. Pharmacokinetics of Atorvastatin and Metformin after Coadministration with Islatravir in Healthy Adults. Vaginal Misoprostol Pharmacokinetic Changes in Obese Parturient Women Who Presented Labor Induction Failure. Pharmacokinetics, Pharmacodynamics, and Safety of Subcutaneous and Intravenous Garadacimab Following Single-Dose Administration in Healthy Japanese and White Adults. Sentinel Dosing-Time for a Risk-Based Approach?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1