Yan-Shu Li, Xi He, Kun Ma, Yan-Ping Wu, Bai-Xiang Li
{"title":"接触阿特拉津对青春期雄性SD大鼠多巴胺能发育的影响","authors":"Yan-Shu Li, Xi He, Kun Ma, Yan-Ping Wu, Bai-Xiang Li","doi":"10.1002/bdrb.21151","DOIUrl":null,"url":null,"abstract":"<p>Atrazine (ATR, 2-chloro-4-ethylamino-6-isopropylamino-s-triazine) is used worldwide as a herbicide, and its presence in the environment has resulted in documented human exposure. A lack of strong evidence for genetic heritability of idiopathic Parkinson's disease has focused attention on environmental toxicants in the disease etiology, particularly agrichemicals. Parkinson's disease is associated with advanced age and is characterized by the degeneration of dopaminergic neurons, but it is unclear whether specific neuronal damage could result from insults during development. The juvenile period is particularly vulnerable to environmental agent, therefore, we evaluated the effects of a 28-day exposure to ATR on the dopaminergic system in pubertal rats. Sprague–Dawley rats were treated orally with ATR at 50, 100, and 200 mg/kg bw, daily from postnatal days 27 to 54. In this study, we examined the hypothesis that pubertal exposure to ATR would disrupt the development of the nigrostriatal dopamine (DA) system. The content of DA and levodopa (L-DA) were examined in striatum samples by HPLC-FL, and the mRNA and protein expression of tyrosine hydroxylase, orphan nuclear hormone receptor (Nurr1), Nurr1 interacting protein (NuIP), and cyclin-dependent kinase inhibitors of the Cip̲Kip family (p57kip2) were examined in samples of the nigrostriatum by use of fluorescence Real-Time quantitative polymerase chain reaction (PCR). Exposure of juvenile rats to the high dose of ATR led to reduced levels of DA and L-DA, genes expression of NuIP, Nurr1, and p57kip2 in animals</p>","PeriodicalId":9120,"journal":{"name":"Birth defects research. Part B, Developmental and reproductive toxicology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2015-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/bdrb.21151","citationCount":"19","resultStr":"{\"title\":\"The Effect of Exposure to Atrazine on Dopaminergic Development in Pubertal Male SD Rats\",\"authors\":\"Yan-Shu Li, Xi He, Kun Ma, Yan-Ping Wu, Bai-Xiang Li\",\"doi\":\"10.1002/bdrb.21151\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Atrazine (ATR, 2-chloro-4-ethylamino-6-isopropylamino-s-triazine) is used worldwide as a herbicide, and its presence in the environment has resulted in documented human exposure. A lack of strong evidence for genetic heritability of idiopathic Parkinson's disease has focused attention on environmental toxicants in the disease etiology, particularly agrichemicals. Parkinson's disease is associated with advanced age and is characterized by the degeneration of dopaminergic neurons, but it is unclear whether specific neuronal damage could result from insults during development. The juvenile period is particularly vulnerable to environmental agent, therefore, we evaluated the effects of a 28-day exposure to ATR on the dopaminergic system in pubertal rats. Sprague–Dawley rats were treated orally with ATR at 50, 100, and 200 mg/kg bw, daily from postnatal days 27 to 54. In this study, we examined the hypothesis that pubertal exposure to ATR would disrupt the development of the nigrostriatal dopamine (DA) system. The content of DA and levodopa (L-DA) were examined in striatum samples by HPLC-FL, and the mRNA and protein expression of tyrosine hydroxylase, orphan nuclear hormone receptor (Nurr1), Nurr1 interacting protein (NuIP), and cyclin-dependent kinase inhibitors of the Cip̲Kip family (p57kip2) were examined in samples of the nigrostriatum by use of fluorescence Real-Time quantitative polymerase chain reaction (PCR). Exposure of juvenile rats to the high dose of ATR led to reduced levels of DA and L-DA, genes expression of NuIP, Nurr1, and p57kip2 in animals</p>\",\"PeriodicalId\":9120,\"journal\":{\"name\":\"Birth defects research. Part B, Developmental and reproductive toxicology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1002/bdrb.21151\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Birth defects research. Part B, Developmental and reproductive toxicology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/bdrb.21151\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q\",\"JCRName\":\"Environmental Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Birth defects research. Part B, Developmental and reproductive toxicology","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bdrb.21151","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q","JCRName":"Environmental Science","Score":null,"Total":0}
The Effect of Exposure to Atrazine on Dopaminergic Development in Pubertal Male SD Rats
Atrazine (ATR, 2-chloro-4-ethylamino-6-isopropylamino-s-triazine) is used worldwide as a herbicide, and its presence in the environment has resulted in documented human exposure. A lack of strong evidence for genetic heritability of idiopathic Parkinson's disease has focused attention on environmental toxicants in the disease etiology, particularly agrichemicals. Parkinson's disease is associated with advanced age and is characterized by the degeneration of dopaminergic neurons, but it is unclear whether specific neuronal damage could result from insults during development. The juvenile period is particularly vulnerable to environmental agent, therefore, we evaluated the effects of a 28-day exposure to ATR on the dopaminergic system in pubertal rats. Sprague–Dawley rats were treated orally with ATR at 50, 100, and 200 mg/kg bw, daily from postnatal days 27 to 54. In this study, we examined the hypothesis that pubertal exposure to ATR would disrupt the development of the nigrostriatal dopamine (DA) system. The content of DA and levodopa (L-DA) were examined in striatum samples by HPLC-FL, and the mRNA and protein expression of tyrosine hydroxylase, orphan nuclear hormone receptor (Nurr1), Nurr1 interacting protein (NuIP), and cyclin-dependent kinase inhibitors of the Cip̲Kip family (p57kip2) were examined in samples of the nigrostriatum by use of fluorescence Real-Time quantitative polymerase chain reaction (PCR). Exposure of juvenile rats to the high dose of ATR led to reduced levels of DA and L-DA, genes expression of NuIP, Nurr1, and p57kip2 in animals
期刊介绍:
The purpose of this journal is to publish original contributions describing the toxicity of chemicals to developing organisms and the process of reproduction. The scope of the journal will inlcude: • toxicity of new chemical entities and biotechnology derived products to developing organismal systems; • toxicity of these and other xenobiotic agents to reproductive function; • multi-generation studies; • endocrine-mediated toxicity, particularly for endpoints that are relevant to development and reproduction; • novel protocols for evaluating developmental and reproductive toxicity; Part B: Developmental and Reproductive Toxicology , formerly published as Teratogenesis, Carcinogenesis and Mutagenesis