Pedro Ferreira, Nuno A Fonseca, Inês Dutra, Ryan Woods, Elizabeth Burnside
{"title":"从乳房x光检查结果和图像引导的核心活检预测恶性肿瘤。","authors":"Pedro Ferreira, Nuno A Fonseca, Inês Dutra, Ryan Woods, Elizabeth Burnside","doi":"10.1504/ijdmb.2015.067319","DOIUrl":null,"url":null,"abstract":"<p><p>The main goal of this work is to produce machine learning models that predict the outcome of a mammography from a reduced set of annotated mammography findings. In the study we used a dataset consisting of 348 consecutive breast masses that underwent image guided core biopsy performed between October 2005 and December 2007 on 328 female subjects. We applied various algorithms with parameter variation to learn from the data. The tasks were to predict mass density and to predict malignancy. The best classifier that predicts mass density is based on a support vector machine and has accuracy of 81.3%. The expert correctly annotated 70% of the mass densities. The best classifier that predicts malignancy is also based on a support vector machine and has accuracy of 85.6%, with a positive predictive value of 85%. One important contribution of this work is that our model can predict malignancy in the absence of the mass density attribute, since we can fill up this attribute using our mass density predictor.</p>","PeriodicalId":54964,"journal":{"name":"International Journal of Data Mining and Bioinformatics","volume":"11 3","pages":"257-76"},"PeriodicalIF":0.2000,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1504/ijdmb.2015.067319","citationCount":"15","resultStr":"{\"title\":\"Predicting malignancy from mammography findings and image-guided core biopsies.\",\"authors\":\"Pedro Ferreira, Nuno A Fonseca, Inês Dutra, Ryan Woods, Elizabeth Burnside\",\"doi\":\"10.1504/ijdmb.2015.067319\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The main goal of this work is to produce machine learning models that predict the outcome of a mammography from a reduced set of annotated mammography findings. In the study we used a dataset consisting of 348 consecutive breast masses that underwent image guided core biopsy performed between October 2005 and December 2007 on 328 female subjects. We applied various algorithms with parameter variation to learn from the data. The tasks were to predict mass density and to predict malignancy. The best classifier that predicts mass density is based on a support vector machine and has accuracy of 81.3%. The expert correctly annotated 70% of the mass densities. The best classifier that predicts malignancy is also based on a support vector machine and has accuracy of 85.6%, with a positive predictive value of 85%. One important contribution of this work is that our model can predict malignancy in the absence of the mass density attribute, since we can fill up this attribute using our mass density predictor.</p>\",\"PeriodicalId\":54964,\"journal\":{\"name\":\"International Journal of Data Mining and Bioinformatics\",\"volume\":\"11 3\",\"pages\":\"257-76\"},\"PeriodicalIF\":0.2000,\"publicationDate\":\"2015-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1504/ijdmb.2015.067319\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Data Mining and Bioinformatics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1504/ijdmb.2015.067319\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Data Mining and Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1504/ijdmb.2015.067319","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
Predicting malignancy from mammography findings and image-guided core biopsies.
The main goal of this work is to produce machine learning models that predict the outcome of a mammography from a reduced set of annotated mammography findings. In the study we used a dataset consisting of 348 consecutive breast masses that underwent image guided core biopsy performed between October 2005 and December 2007 on 328 female subjects. We applied various algorithms with parameter variation to learn from the data. The tasks were to predict mass density and to predict malignancy. The best classifier that predicts mass density is based on a support vector machine and has accuracy of 81.3%. The expert correctly annotated 70% of the mass densities. The best classifier that predicts malignancy is also based on a support vector machine and has accuracy of 85.6%, with a positive predictive value of 85%. One important contribution of this work is that our model can predict malignancy in the absence of the mass density attribute, since we can fill up this attribute using our mass density predictor.
期刊介绍:
Mining bioinformatics data is an emerging area at the intersection between bioinformatics and data mining. The objective of IJDMB is to facilitate collaboration between data mining researchers and bioinformaticians by presenting cutting edge research topics and methodologies in the area of data mining for bioinformatics. This perspective acknowledges the inter-disciplinary nature of research in data mining and bioinformatics and provides a unified forum for researchers/practitioners/students/policy makers to share the latest research and developments in this fast growing multi-disciplinary research area.