植物性兽用疫苗的养殖及其在动物疾病预防中的应用。

IF 1.1 Q4 VIROLOGY Advances in Virology Pub Date : 2015-01-01 Epub Date: 2015-08-13 DOI:10.1155/2015/936940
Pit Sze Liew, Mohd Hair-Bejo
{"title":"植物性兽用疫苗的养殖及其在动物疾病预防中的应用。","authors":"Pit Sze Liew, Mohd Hair-Bejo","doi":"10.1155/2015/936940","DOIUrl":null,"url":null,"abstract":"<p><p>Plants have been studied for the production of pharmaceutical compounds for more than two decades now. Ever since the plant-made poultry vaccine against Newcastle disease virus made a breakthrough and went all the way to obtain regulatory approval, research to use plants for expression and delivery of vaccine proteins for animals was intensified. Indeed, in view of the high production costs of veterinary vaccines, plants represent attractive biofactories and offer many promising advantages in the production of recombinant vaccine proteins. Furthermore, the possibility of conducting immunogenicity and challenge studies in target animals has greatly exaggerated the progress. Although there are no edible plant-produced animal vaccines in the market, plant-based vaccine technology has great potentials. In this review, development, uses, and advantages of plant-based recombinant protein production in various expression platforms are discussed. In addition, examples of plant-based veterinary vaccines showing strong indication in terms of efficacy in animal disease prevention are also described. </p>","PeriodicalId":7473,"journal":{"name":"Advances in Virology","volume":"2015 ","pages":"936940"},"PeriodicalIF":1.1000,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4550766/pdf/","citationCount":"0","resultStr":"{\"title\":\"Farming of Plant-Based Veterinary Vaccines and Their Applications for Disease Prevention in Animals.\",\"authors\":\"Pit Sze Liew, Mohd Hair-Bejo\",\"doi\":\"10.1155/2015/936940\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Plants have been studied for the production of pharmaceutical compounds for more than two decades now. Ever since the plant-made poultry vaccine against Newcastle disease virus made a breakthrough and went all the way to obtain regulatory approval, research to use plants for expression and delivery of vaccine proteins for animals was intensified. Indeed, in view of the high production costs of veterinary vaccines, plants represent attractive biofactories and offer many promising advantages in the production of recombinant vaccine proteins. Furthermore, the possibility of conducting immunogenicity and challenge studies in target animals has greatly exaggerated the progress. Although there are no edible plant-produced animal vaccines in the market, plant-based vaccine technology has great potentials. In this review, development, uses, and advantages of plant-based recombinant protein production in various expression platforms are discussed. In addition, examples of plant-based veterinary vaccines showing strong indication in terms of efficacy in animal disease prevention are also described. </p>\",\"PeriodicalId\":7473,\"journal\":{\"name\":\"Advances in Virology\",\"volume\":\"2015 \",\"pages\":\"936940\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2015-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4550766/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Virology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2015/936940\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2015/8/13 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"VIROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Virology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2015/936940","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2015/8/13 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"VIROLOGY","Score":null,"Total":0}
引用次数: 0

摘要

二十多年来,人们一直在研究如何利用植物生产药物化合物。自从植物制成的家禽新城疫病毒疫苗取得突破性进展并获得监管部门批准后,利用植物表达和输送动物疫苗蛋白的研究就得到了加强。事实上,鉴于兽用疫苗的生产成本较高,植物是极具吸引力的生物工厂,在生产重组疫苗蛋白方面具有许多有前景的优势。此外,在目标动物身上进行免疫原性和挑战性研究的可能性也极大地推动了这一进程。虽然目前市场上还没有可食用的植物生产的动物疫苗,但植物疫苗技术具有巨大的潜力。本综述讨论了各种表达平台中植物重组蛋白生产的发展、用途和优势。此外,还介绍了在动物疾病预防方面显示出强大功效的植物兽用疫苗实例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Farming of Plant-Based Veterinary Vaccines and Their Applications for Disease Prevention in Animals.

Plants have been studied for the production of pharmaceutical compounds for more than two decades now. Ever since the plant-made poultry vaccine against Newcastle disease virus made a breakthrough and went all the way to obtain regulatory approval, research to use plants for expression and delivery of vaccine proteins for animals was intensified. Indeed, in view of the high production costs of veterinary vaccines, plants represent attractive biofactories and offer many promising advantages in the production of recombinant vaccine proteins. Furthermore, the possibility of conducting immunogenicity and challenge studies in target animals has greatly exaggerated the progress. Although there are no edible plant-produced animal vaccines in the market, plant-based vaccine technology has great potentials. In this review, development, uses, and advantages of plant-based recombinant protein production in various expression platforms are discussed. In addition, examples of plant-based veterinary vaccines showing strong indication in terms of efficacy in animal disease prevention are also described.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.30
自引率
0.00%
发文量
23
审稿时长
22 weeks
期刊最新文献
Epidemiological, Biological, and Clinical Characteristics of Central Nervous System Enterovirus Infections Among Hospitalized Patients at Ibn Sina University Hospital Center in Rabat: Case Study Report (A Series of 19 Cases). Increased Incidence of Rhinovirus Pneumonia in Children During the COVID-19 Pandemic in Mexico. Measles Outbreaks in the Republic of Congo: Epidemiology of Laboratory-Confirmed Cases Between 2019 and 2022. Support Vector Machine Outperforms Other Machine Learning Models in Early Diagnosis of Dengue Using Routine Clinical Data. In Silico Design of a Trans-Amplifying RNA-Based Vaccine against SARS-CoV-2 Structural Proteins.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1