Romualdo Benigni, Chiara Laura Battistelli, Cecilia Bossa, Alessandro Giuliani, Olga Tcheremenskaia
{"title":"替代毒性试验:对皮肤致敏、ToxCast I期和II期以及致癌性的分析为如何模拟与不良结果途径相关的机制提供了指示。","authors":"Romualdo Benigni, Chiara Laura Battistelli, Cecilia Bossa, Alessandro Giuliani, Olga Tcheremenskaia","doi":"10.1080/10590501.2015.1096885","DOIUrl":null,"url":null,"abstract":"<p><p>This article studies alternative toxicological approaches, with new (skin sensitization, ToxCast) and previous (carcinogenicity) analyses. Quantitative modeling of rate-limiting steps in skin sensitization and carcinogenicity predicts the majority of toxicants. Similarly, successful (Quantitative) Structure-Activity Relationships models exploit the quantification of only one, or few rate-limiting steps. High-throughput assays within ToxCast point to promising associations with endocrine disruption, whereas markers for pathways intermediate events have limited correlation with most endpoints. Since the pathways may be very different (often not simple linear chains of events), quantitative analysis is necessary to identify the type of mechanism and build the appropriate model. </p>","PeriodicalId":51085,"journal":{"name":"Journal of Environmental Science and Health Part C-Environmental Carcinogenesis & Ecotoxicology Reviews","volume":"33 4","pages":"422-43"},"PeriodicalIF":0.0000,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/10590501.2015.1096885","citationCount":"7","resultStr":"{\"title\":\"Alternative Toxicity Testing: Analyses on Skin Sensitization, ToxCast Phases I and II, and Carcinogenicity Provide Indications on How to Model Mechanisms Linked to Adverse Outcome Pathways.\",\"authors\":\"Romualdo Benigni, Chiara Laura Battistelli, Cecilia Bossa, Alessandro Giuliani, Olga Tcheremenskaia\",\"doi\":\"10.1080/10590501.2015.1096885\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This article studies alternative toxicological approaches, with new (skin sensitization, ToxCast) and previous (carcinogenicity) analyses. Quantitative modeling of rate-limiting steps in skin sensitization and carcinogenicity predicts the majority of toxicants. Similarly, successful (Quantitative) Structure-Activity Relationships models exploit the quantification of only one, or few rate-limiting steps. High-throughput assays within ToxCast point to promising associations with endocrine disruption, whereas markers for pathways intermediate events have limited correlation with most endpoints. Since the pathways may be very different (often not simple linear chains of events), quantitative analysis is necessary to identify the type of mechanism and build the appropriate model. </p>\",\"PeriodicalId\":51085,\"journal\":{\"name\":\"Journal of Environmental Science and Health Part C-Environmental Carcinogenesis & Ecotoxicology Reviews\",\"volume\":\"33 4\",\"pages\":\"422-43\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/10590501.2015.1096885\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Environmental Science and Health Part C-Environmental Carcinogenesis & Ecotoxicology Reviews\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/10590501.2015.1096885\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Science and Health Part C-Environmental Carcinogenesis & Ecotoxicology Reviews","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/10590501.2015.1096885","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
Alternative Toxicity Testing: Analyses on Skin Sensitization, ToxCast Phases I and II, and Carcinogenicity Provide Indications on How to Model Mechanisms Linked to Adverse Outcome Pathways.
This article studies alternative toxicological approaches, with new (skin sensitization, ToxCast) and previous (carcinogenicity) analyses. Quantitative modeling of rate-limiting steps in skin sensitization and carcinogenicity predicts the majority of toxicants. Similarly, successful (Quantitative) Structure-Activity Relationships models exploit the quantification of only one, or few rate-limiting steps. High-throughput assays within ToxCast point to promising associations with endocrine disruption, whereas markers for pathways intermediate events have limited correlation with most endpoints. Since the pathways may be very different (often not simple linear chains of events), quantitative analysis is necessary to identify the type of mechanism and build the appropriate model.
期刊介绍:
Journal of Environmental Science and Health, Part C: Environmental Carcinogenesis and Ecotoxicology Reviews aims at rapid publication of reviews on important subjects in various areas of environmental toxicology, health and carcinogenesis. Among the subjects covered are risk assessments of chemicals including nanomaterials and physical agents of environmental significance, harmful organisms found in the environment and toxic agents they produce, and food and drugs as environmental factors. It includes basic research, methodology, host susceptibility, mechanistic studies, theoretical modeling, environmental and geotechnical engineering, and environmental protection. Submission to this journal is primarily on an invitational basis. All submissions should be made through the Editorial Manager site, and are subject to peer review by independent, anonymous expert referees. Please review the instructions for authors for manuscript submission guidance.