ACC-FMD:蛋白质相互作用网络中功能模块检测的蚁群聚类。

Pub Date : 2015-01-01 DOI:10.1504/ijdmb.2015.067323
Junzhong Ji, Hongxin Liu, Aidong Zhang, Zhijun Liu, Chunnian Liu
{"title":"ACC-FMD:蛋白质相互作用网络中功能模块检测的蚁群聚类。","authors":"Junzhong Ji,&nbsp;Hongxin Liu,&nbsp;Aidong Zhang,&nbsp;Zhijun Liu,&nbsp;Chunnian Liu","doi":"10.1504/ijdmb.2015.067323","DOIUrl":null,"url":null,"abstract":"<p><p>Mining functional modules in Protein-Protein Interaction (PPI) networks is a very important research for revealing the structure-functionality relationships in biological processes. More recently, some swarm intelligence algorithms have been successfully applied in the field. This paper presents a new nature-inspired approach, ACC-FMD, which is based on ant colony clustering to detect functional modules. First, some proteins with the higher clustering coefficients are, respectively, selected as ant seed nodes. And then, the picking and dropping operations based on ant probabilistic models are developed and employed to assign proteins into the corresponding clusters represented by seeds. Finally, the best clustering result in each generation is used to perform the information transmission by updating the similarly function. Experimental results on some benchmarked datasets show that ACC-FMD outperforms the CFinder and MCODE algorithms and has comparative performance with the MINE, COACH, DPClus and Core algorithms in terms of the general evaluation metrics.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1504/ijdmb.2015.067323","citationCount":"13","resultStr":"{\"title\":\"ACC-FMD: ant colony clustering for functional module detection in protein-protein interaction networks.\",\"authors\":\"Junzhong Ji,&nbsp;Hongxin Liu,&nbsp;Aidong Zhang,&nbsp;Zhijun Liu,&nbsp;Chunnian Liu\",\"doi\":\"10.1504/ijdmb.2015.067323\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Mining functional modules in Protein-Protein Interaction (PPI) networks is a very important research for revealing the structure-functionality relationships in biological processes. More recently, some swarm intelligence algorithms have been successfully applied in the field. This paper presents a new nature-inspired approach, ACC-FMD, which is based on ant colony clustering to detect functional modules. First, some proteins with the higher clustering coefficients are, respectively, selected as ant seed nodes. And then, the picking and dropping operations based on ant probabilistic models are developed and employed to assign proteins into the corresponding clusters represented by seeds. Finally, the best clustering result in each generation is used to perform the information transmission by updating the similarly function. Experimental results on some benchmarked datasets show that ACC-FMD outperforms the CFinder and MCODE algorithms and has comparative performance with the MINE, COACH, DPClus and Core algorithms in terms of the general evaluation metrics.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2015-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1504/ijdmb.2015.067323\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1504/ijdmb.2015.067323\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1504/ijdmb.2015.067323","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

蛋白质-蛋白质相互作用(Protein-Protein Interaction, PPI)网络中功能模块的挖掘是揭示生物过程中结构-功能关系的重要研究内容。近年来,一些群体智能算法已成功应用于该领域。本文提出了一种基于蚁群聚类的功能模块检测新方法——ACC-FMD。首先,分别选取聚类系数较高的蛋白作为蚁种节点;然后,开发了基于蚁群概率模型的取落操作,并将蛋白质分配到以种子为代表的相应簇中。最后,利用每一代的最佳聚类结果,通过更新相似函数进行信息传递。在一些基准数据集上的实验结果表明,ACC-FMD算法优于CFinder和MCODE算法,并且在一般评价指标上与MINE、COACH、DPClus和Core算法性能相当。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
ACC-FMD: ant colony clustering for functional module detection in protein-protein interaction networks.

Mining functional modules in Protein-Protein Interaction (PPI) networks is a very important research for revealing the structure-functionality relationships in biological processes. More recently, some swarm intelligence algorithms have been successfully applied in the field. This paper presents a new nature-inspired approach, ACC-FMD, which is based on ant colony clustering to detect functional modules. First, some proteins with the higher clustering coefficients are, respectively, selected as ant seed nodes. And then, the picking and dropping operations based on ant probabilistic models are developed and employed to assign proteins into the corresponding clusters represented by seeds. Finally, the best clustering result in each generation is used to perform the information transmission by updating the similarly function. Experimental results on some benchmarked datasets show that ACC-FMD outperforms the CFinder and MCODE algorithms and has comparative performance with the MINE, COACH, DPClus and Core algorithms in terms of the general evaluation metrics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1