Susan LeGendre-McGhee, Photini S Rice, R Andrew Wall, Kyle J Sprute, Ramireddy Bommireddy, Amber M Luttman, Raymond B Nagle, Edward R Abril, Katrina Farrell, Chiu-Hsieh Hsu, Denise J Roe, Eugene W Gerner, Natalia A Ignatenko, Jennifer K Barton
{"title":"利用光学相干断层成像技术对结直肠癌小鼠模型中药物联合干预的时间序列评估。","authors":"Susan LeGendre-McGhee, Photini S Rice, R Andrew Wall, Kyle J Sprute, Ramireddy Bommireddy, Amber M Luttman, Raymond B Nagle, Edward R Abril, Katrina Farrell, Chiu-Hsieh Hsu, Denise J Roe, Eugene W Gerner, Natalia A Ignatenko, Jennifer K Barton","doi":"10.4137/CGM.S21216","DOIUrl":null,"url":null,"abstract":"<p><p>Optical coherence tomography (OCT) is a high-resolution, nondestructive imaging modality that enables time-serial assessment of adenoma development in the mouse model of colorectal cancer. In this study, OCT was utilized to evaluate the effectiveness of interventions with the experimental antitumor agent α-difluoromethylornithine (DFMO) and a nonsteroidal anti-inflammatory drug sulindac during early [chemoprevention (CP)] and late stages [chemotherapy (CT)] of colon tumorigenesis. Biological endpoints for drug interventions included OCT-generated tumor number and tumor burden. Immunochistochemistry was used to evaluate biochemical endpoints [Ki-67, cleaved caspase-3, cyclooxygenase (COX)-2, β-catenin]. K-Ras codon 12 mutations were studied with polymerase chain reaction-based technique. We demonstrated that OCT imaging significantly correlated with histological analysis of both tumor number and tumor burden for all experimental groups (P < 0.0001), but allows more accurate and full characterization of tumor number and burden growth rate because of its time-serial, nondestructive nature. DFMO alone or in combination with sulindac suppressed both the tumor number and tumor burden growth rate in the CP setting because of DFMO-mediated decrease in cell proliferation (Ki-67, P < 0.001) and K-RAS mutations frequency (P = 0.04). In the CT setting, sulindac alone and DFMO/sulindac combination were effective in reducing tumor number, but not tumor burden growth rate. A decrease in COX-2 staining in DFMO/sulindac CT groups (COX-2, P < 0.01) confirmed the treatment effect. Use of nondestructive OCT enabled repeated, quantitative evaluation of tumor number and burden, allowing changes in these parameters to be measured during CP and as a result of CT. In conclusion, OCT is a robust minimally invasive method for monitoring colorectal cancer disease and effectiveness of therapies in mouse models. </p>","PeriodicalId":88440,"journal":{"name":"Cancer growth and metastasis","volume":"8 Suppl 1","pages":"63-80"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4137/CGM.S21216","citationCount":"5","resultStr":"{\"title\":\"Time-serial Assessment of Drug Combination Interventions in a Mouse Model of Colorectal Carcinogenesis Using Optical Coherence Tomography.\",\"authors\":\"Susan LeGendre-McGhee, Photini S Rice, R Andrew Wall, Kyle J Sprute, Ramireddy Bommireddy, Amber M Luttman, Raymond B Nagle, Edward R Abril, Katrina Farrell, Chiu-Hsieh Hsu, Denise J Roe, Eugene W Gerner, Natalia A Ignatenko, Jennifer K Barton\",\"doi\":\"10.4137/CGM.S21216\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Optical coherence tomography (OCT) is a high-resolution, nondestructive imaging modality that enables time-serial assessment of adenoma development in the mouse model of colorectal cancer. In this study, OCT was utilized to evaluate the effectiveness of interventions with the experimental antitumor agent α-difluoromethylornithine (DFMO) and a nonsteroidal anti-inflammatory drug sulindac during early [chemoprevention (CP)] and late stages [chemotherapy (CT)] of colon tumorigenesis. Biological endpoints for drug interventions included OCT-generated tumor number and tumor burden. Immunochistochemistry was used to evaluate biochemical endpoints [Ki-67, cleaved caspase-3, cyclooxygenase (COX)-2, β-catenin]. K-Ras codon 12 mutations were studied with polymerase chain reaction-based technique. We demonstrated that OCT imaging significantly correlated with histological analysis of both tumor number and tumor burden for all experimental groups (P < 0.0001), but allows more accurate and full characterization of tumor number and burden growth rate because of its time-serial, nondestructive nature. DFMO alone or in combination with sulindac suppressed both the tumor number and tumor burden growth rate in the CP setting because of DFMO-mediated decrease in cell proliferation (Ki-67, P < 0.001) and K-RAS mutations frequency (P = 0.04). In the CT setting, sulindac alone and DFMO/sulindac combination were effective in reducing tumor number, but not tumor burden growth rate. A decrease in COX-2 staining in DFMO/sulindac CT groups (COX-2, P < 0.01) confirmed the treatment effect. Use of nondestructive OCT enabled repeated, quantitative evaluation of tumor number and burden, allowing changes in these parameters to be measured during CP and as a result of CT. In conclusion, OCT is a robust minimally invasive method for monitoring colorectal cancer disease and effectiveness of therapies in mouse models. </p>\",\"PeriodicalId\":88440,\"journal\":{\"name\":\"Cancer growth and metastasis\",\"volume\":\"8 Suppl 1\",\"pages\":\"63-80\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.4137/CGM.S21216\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cancer growth and metastasis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4137/CGM.S21216\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2015/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer growth and metastasis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4137/CGM.S21216","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2015/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
摘要
光学相干断层扫描(OCT)是一种高分辨率、非破坏性的成像方式,可以对结直肠癌小鼠模型中的腺瘤发展进行时间序列评估。本研究利用OCT评价实验性抗肿瘤药α-二氟甲基鸟氨酸(DFMO)和非甾体抗炎药舒林酸在结肠肿瘤发生早期[化学预防(CP)]和晚期[化学治疗(CT)]干预的有效性。药物干预的生物学终点包括oct产生的肿瘤数量和肿瘤负荷。采用免疫组化方法评价生化终点[Ki-67, cleaved caspase-3,环氧化酶(COX)-2, β-catenin]。采用聚合酶链反应技术研究K-Ras密码子12突变。我们证明,在所有实验组中,OCT成像与肿瘤数量和肿瘤负荷的组织学分析均显著相关(P < 0.0001),但由于其时间序列、非破坏性,因此可以更准确、更全面地表征肿瘤数量和负荷增长速度。由于DFMO介导的细胞增殖(Ki-67, P < 0.001)和K-RAS突变频率(P = 0.04)的降低,DFMO单独或联合舒林酸均能抑制CP环境下的肿瘤数量和肿瘤负荷生长速率。在CT检查中,单用舒林酸和DFMO/舒林酸联合治疗均能有效减少肿瘤数量,但对肿瘤负荷生长率无显著影响。DFMO/舒林达克CT组COX-2染色降低(COX-2, P < 0.01),证实了治疗效果。使用非破坏性OCT可以重复、定量地评估肿瘤数量和负荷,允许在CP期间和CT结果中测量这些参数的变化。综上所述,OCT是一种在小鼠模型中监测结直肠癌疾病和治疗效果的强大微创方法。
Time-serial Assessment of Drug Combination Interventions in a Mouse Model of Colorectal Carcinogenesis Using Optical Coherence Tomography.
Optical coherence tomography (OCT) is a high-resolution, nondestructive imaging modality that enables time-serial assessment of adenoma development in the mouse model of colorectal cancer. In this study, OCT was utilized to evaluate the effectiveness of interventions with the experimental antitumor agent α-difluoromethylornithine (DFMO) and a nonsteroidal anti-inflammatory drug sulindac during early [chemoprevention (CP)] and late stages [chemotherapy (CT)] of colon tumorigenesis. Biological endpoints for drug interventions included OCT-generated tumor number and tumor burden. Immunochistochemistry was used to evaluate biochemical endpoints [Ki-67, cleaved caspase-3, cyclooxygenase (COX)-2, β-catenin]. K-Ras codon 12 mutations were studied with polymerase chain reaction-based technique. We demonstrated that OCT imaging significantly correlated with histological analysis of both tumor number and tumor burden for all experimental groups (P < 0.0001), but allows more accurate and full characterization of tumor number and burden growth rate because of its time-serial, nondestructive nature. DFMO alone or in combination with sulindac suppressed both the tumor number and tumor burden growth rate in the CP setting because of DFMO-mediated decrease in cell proliferation (Ki-67, P < 0.001) and K-RAS mutations frequency (P = 0.04). In the CT setting, sulindac alone and DFMO/sulindac combination were effective in reducing tumor number, but not tumor burden growth rate. A decrease in COX-2 staining in DFMO/sulindac CT groups (COX-2, P < 0.01) confirmed the treatment effect. Use of nondestructive OCT enabled repeated, quantitative evaluation of tumor number and burden, allowing changes in these parameters to be measured during CP and as a result of CT. In conclusion, OCT is a robust minimally invasive method for monitoring colorectal cancer disease and effectiveness of therapies in mouse models.