使用铁基燃料添加剂和烧结金属过滤系统的柴油发动机的排放。

Annals of Occupational Hygiene Pub Date : 2016-03-01 Epub Date: 2015-09-30 DOI:10.1093/annhyg/mev071
Aleksandar D Bugarski, Jon A Hummer, Jozef S Stachulak, Arthur Miller, Larry D Patts, Emanuele G Cauda
{"title":"使用铁基燃料添加剂和烧结金属过滤系统的柴油发动机的排放。","authors":"Aleksandar D Bugarski,&nbsp;Jon A Hummer,&nbsp;Jozef S Stachulak,&nbsp;Arthur Miller,&nbsp;Larry D Patts,&nbsp;Emanuele G Cauda","doi":"10.1093/annhyg/mev071","DOIUrl":null,"url":null,"abstract":"<p><p>A series of laboratory tests were conducted to assess the effects of Fe-containing fuel additives on aerosols emitted by a diesel engine retrofitted with a sintered metal filter (SMF) system. Emission measurements performed upstream and downstream of the SMF system were compared, for cases when the engine was fueled with neat ultralow sulfur diesel (ULSD) and with ULSD treated with two formulations of additives containing Fe-based catalysts. The effects were assessed for four steady-state engine operating conditions and one transient cycle. The results showed that the SMF system reduced the average total number and surface area concentrations of aerosols by more than 100-fold. The total mass and elemental carbon results confirmed that the SMF system was indeed very effective in the removal of diesel aerosols. When added at the recommended concentrations (30 p.p.m. of iron), the tested additives had minor adverse impacts on the number, surface area, and mass concentrations of filter-out (FOut) aerosols. For one of the test cases, the additives may have contributed to measurable concentrations of engine-out (EOut) nucleation mode aerosols. The additives had only a minor impact on the concentration and size distribution of volatile and semi-volatile FOut aerosols. Metal analysis showed that the introduction of Fe with the additives substantially increased Fe concentration in the EOut, but the SMF system was effective in removal of Fe-containing aerosols. The FOut Fe concentrations for all three tested fuels were found to be much lower than the corresponding EOut Fe concentrations for the case of untreated ULSD fuel. The results support recommendations that these additives should not be used in diesel engines unless they are equipped with exhaust filtration systems. Since the tested SMF system was found to be very efficient in removing Fe introduced by the additives, the use of these additives should not result in a measurable increase in emissions of de novo generated Fe-containing aerosols. The findings from this study should promote a better understanding of the benefits and challenges of using sintered metal systems and fuel additives to control the exposure of underground miners and other workers to diesel aerosols and gases. </p>","PeriodicalId":8458,"journal":{"name":"Annals of Occupational Hygiene","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/annhyg/mev071","citationCount":"13","resultStr":"{\"title\":\"Emissions from a Diesel Engine using Fe-based Fuel Additives and a Sintered Metal Filtration System.\",\"authors\":\"Aleksandar D Bugarski,&nbsp;Jon A Hummer,&nbsp;Jozef S Stachulak,&nbsp;Arthur Miller,&nbsp;Larry D Patts,&nbsp;Emanuele G Cauda\",\"doi\":\"10.1093/annhyg/mev071\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A series of laboratory tests were conducted to assess the effects of Fe-containing fuel additives on aerosols emitted by a diesel engine retrofitted with a sintered metal filter (SMF) system. Emission measurements performed upstream and downstream of the SMF system were compared, for cases when the engine was fueled with neat ultralow sulfur diesel (ULSD) and with ULSD treated with two formulations of additives containing Fe-based catalysts. The effects were assessed for four steady-state engine operating conditions and one transient cycle. The results showed that the SMF system reduced the average total number and surface area concentrations of aerosols by more than 100-fold. The total mass and elemental carbon results confirmed that the SMF system was indeed very effective in the removal of diesel aerosols. When added at the recommended concentrations (30 p.p.m. of iron), the tested additives had minor adverse impacts on the number, surface area, and mass concentrations of filter-out (FOut) aerosols. For one of the test cases, the additives may have contributed to measurable concentrations of engine-out (EOut) nucleation mode aerosols. The additives had only a minor impact on the concentration and size distribution of volatile and semi-volatile FOut aerosols. Metal analysis showed that the introduction of Fe with the additives substantially increased Fe concentration in the EOut, but the SMF system was effective in removal of Fe-containing aerosols. The FOut Fe concentrations for all three tested fuels were found to be much lower than the corresponding EOut Fe concentrations for the case of untreated ULSD fuel. The results support recommendations that these additives should not be used in diesel engines unless they are equipped with exhaust filtration systems. Since the tested SMF system was found to be very efficient in removing Fe introduced by the additives, the use of these additives should not result in a measurable increase in emissions of de novo generated Fe-containing aerosols. The findings from this study should promote a better understanding of the benefits and challenges of using sintered metal systems and fuel additives to control the exposure of underground miners and other workers to diesel aerosols and gases. </p>\",\"PeriodicalId\":8458,\"journal\":{\"name\":\"Annals of Occupational Hygiene\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1093/annhyg/mev071\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Occupational Hygiene\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/annhyg/mev071\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2015/9/30 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Occupational Hygiene","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/annhyg/mev071","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2015/9/30 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

为了评估含铁燃料添加剂对安装了烧结金属过滤器(SMF)系统的柴油发动机排放的气溶胶的影响,进行了一系列的实验室试验。研究人员对SMF系统上下行的排放测量结果进行了比较,其中包括使用纯超低硫柴油(ULSD)和使用两种含铁基催化剂添加剂处理的ULSD。在四种发动机稳态工况和一个瞬态循环工况下,对其效果进行了评估。结果表明,SMF系统使气溶胶的平均总数和表面积浓度降低了100倍以上。总质量和元素碳的结果证实了SMF系统在去除柴油气溶胶方面确实是非常有效的。当以推荐浓度(30 ppm的铁)添加时,测试的添加剂对过滤出(FOut)气溶胶的数量、表面积和质量浓度有轻微的不利影响。在其中一个测试案例中,添加剂可能导致了发动机出核模式气溶胶的可测量浓度。添加剂对挥发性和半挥发性FOut气溶胶的浓度和粒径分布影响较小。金属分析表明,添加铁后,EOut中的铁浓度显著增加,但SMF系统对含铁气溶胶的去除效果较好。发现所有三种测试燃料的FOut铁浓度远低于未经处理的ULSD燃料的相应EOut铁浓度。研究结果支持以下建议:除非柴油发动机配备了排气过滤系统,否则这些添加剂不应用于柴油发动机。由于测试的SMF系统被发现在去除添加剂引入的铁方面非常有效,因此使用这些添加剂不会导致新产生的含铁气溶胶的排放量明显增加。这项研究的结果应该促进人们更好地了解使用烧结金属系统和燃料添加剂来控制地下矿工和其他工人接触柴油气溶胶和气体的好处和挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Emissions from a Diesel Engine using Fe-based Fuel Additives and a Sintered Metal Filtration System.

A series of laboratory tests were conducted to assess the effects of Fe-containing fuel additives on aerosols emitted by a diesel engine retrofitted with a sintered metal filter (SMF) system. Emission measurements performed upstream and downstream of the SMF system were compared, for cases when the engine was fueled with neat ultralow sulfur diesel (ULSD) and with ULSD treated with two formulations of additives containing Fe-based catalysts. The effects were assessed for four steady-state engine operating conditions and one transient cycle. The results showed that the SMF system reduced the average total number and surface area concentrations of aerosols by more than 100-fold. The total mass and elemental carbon results confirmed that the SMF system was indeed very effective in the removal of diesel aerosols. When added at the recommended concentrations (30 p.p.m. of iron), the tested additives had minor adverse impacts on the number, surface area, and mass concentrations of filter-out (FOut) aerosols. For one of the test cases, the additives may have contributed to measurable concentrations of engine-out (EOut) nucleation mode aerosols. The additives had only a minor impact on the concentration and size distribution of volatile and semi-volatile FOut aerosols. Metal analysis showed that the introduction of Fe with the additives substantially increased Fe concentration in the EOut, but the SMF system was effective in removal of Fe-containing aerosols. The FOut Fe concentrations for all three tested fuels were found to be much lower than the corresponding EOut Fe concentrations for the case of untreated ULSD fuel. The results support recommendations that these additives should not be used in diesel engines unless they are equipped with exhaust filtration systems. Since the tested SMF system was found to be very efficient in removing Fe introduced by the additives, the use of these additives should not result in a measurable increase in emissions of de novo generated Fe-containing aerosols. The findings from this study should promote a better understanding of the benefits and challenges of using sintered metal systems and fuel additives to control the exposure of underground miners and other workers to diesel aerosols and gases.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
2 months
期刊最新文献
Factors Associated With Non-compliance of Asbestos Occupational Standards in Brake Repair Workers. Whole Body Vibration Exposures and Health Status among Professional Truck Drivers: A Cross-sectional Analysis. Physicochemical Characterization of Aerosol Generated in the Gas Tungsten Arc Welding of Stainless Steel. Effect of Occupational Exposure on A(H1N1)pdm09 Infection and Hospitalization. A Systematic Review of Reported Exposure to Engineered Nanomaterials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1