一种基于最近邻和模块化增量的蛋白质复合体识别方法。

IF 0.2 4区 生物学 Q4 MATHEMATICAL & COMPUTATIONAL BIOLOGY International Journal of Data Mining and Bioinformatics Pub Date : 2015-01-01 DOI:10.1504/ijdmb.2015.067973
Xianjun Shen, Yanli Zhao, Yanan Li, Yang Yi, Tingting He, Jincai Yang
{"title":"一种基于最近邻和模块化增量的蛋白质复合体识别方法。","authors":"Xianjun Shen,&nbsp;Yanli Zhao,&nbsp;Yanan Li,&nbsp;Yang Yi,&nbsp;Tingting He,&nbsp;Jincai Yang","doi":"10.1504/ijdmb.2015.067973","DOIUrl":null,"url":null,"abstract":"<p><p>In order to overcome the limitations of global modularity and the deficiency of local modularity, we propose a hybrid modularity measure Local-Global Quantification (LGQ) which considers global modularity and local modularity together. LGQ adopts a suitable module feature adjustable parameter to control the balance of global detecting capability and local search capability in Protein-Protein Interactions (PPI) Network. Furthermore, we develop a new protein complex mining algorithm called Best Neighbour and Local-Global Quantification (BN-LGQ) which integrates the best neighbour node and modularity increment. BN-LGQ expands the protein complex by fast searching the best neighbour node of the current cluster and by calculating the modularity increment as a metric to determine whether the best neighbour node can join the current cluster. The experimental results show BN-LGQ performs a better accuracy on predicting protein complexes and has a higher match with the reference protein complexes than MCL and MCODE algorithms. Moreover, BN-LGQ can effectively discover protein complexes with better biological significance in the PPI network.</p>","PeriodicalId":54964,"journal":{"name":"International Journal of Data Mining and Bioinformatics","volume":"11 4","pages":"458-73"},"PeriodicalIF":0.2000,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1504/ijdmb.2015.067973","citationCount":"0","resultStr":"{\"title\":\"An integrated approach to identify protein complex based on best neighbour and modularity increment.\",\"authors\":\"Xianjun Shen,&nbsp;Yanli Zhao,&nbsp;Yanan Li,&nbsp;Yang Yi,&nbsp;Tingting He,&nbsp;Jincai Yang\",\"doi\":\"10.1504/ijdmb.2015.067973\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In order to overcome the limitations of global modularity and the deficiency of local modularity, we propose a hybrid modularity measure Local-Global Quantification (LGQ) which considers global modularity and local modularity together. LGQ adopts a suitable module feature adjustable parameter to control the balance of global detecting capability and local search capability in Protein-Protein Interactions (PPI) Network. Furthermore, we develop a new protein complex mining algorithm called Best Neighbour and Local-Global Quantification (BN-LGQ) which integrates the best neighbour node and modularity increment. BN-LGQ expands the protein complex by fast searching the best neighbour node of the current cluster and by calculating the modularity increment as a metric to determine whether the best neighbour node can join the current cluster. The experimental results show BN-LGQ performs a better accuracy on predicting protein complexes and has a higher match with the reference protein complexes than MCL and MCODE algorithms. Moreover, BN-LGQ can effectively discover protein complexes with better biological significance in the PPI network.</p>\",\"PeriodicalId\":54964,\"journal\":{\"name\":\"International Journal of Data Mining and Bioinformatics\",\"volume\":\"11 4\",\"pages\":\"458-73\"},\"PeriodicalIF\":0.2000,\"publicationDate\":\"2015-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1504/ijdmb.2015.067973\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Data Mining and Bioinformatics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1504/ijdmb.2015.067973\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Data Mining and Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1504/ijdmb.2015.067973","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

为了克服全局模块化的局限性和局部模块化的不足,提出了一种同时考虑全局模块化和局部模块化的混合模块化测度局部全局量化(LGQ)。在蛋白质-蛋白质相互作用(Protein-Protein Interactions, PPI)网络中,LGQ采用合适的模块特征可调参数来控制全局检测能力和局部搜索能力的平衡。在此基础上,我们提出了一种结合最优邻居节点和模块化增量的蛋白质复合物挖掘算法,称为最优邻居和局部-全局量化算法(BN-LGQ)。BN-LGQ算法通过快速搜索当前集群的最佳邻居节点,并通过计算模块化增量作为度量来确定最佳邻居节点是否可以加入当前集群,从而扩展蛋白质复合物。实验结果表明,与MCL和MCODE算法相比,BN-LGQ算法对蛋白质复合物的预测精度更高,与参考蛋白复合物的匹配度更高。此外,BN-LGQ可以有效发现PPI网络中具有较好生物学意义的蛋白复合物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An integrated approach to identify protein complex based on best neighbour and modularity increment.

In order to overcome the limitations of global modularity and the deficiency of local modularity, we propose a hybrid modularity measure Local-Global Quantification (LGQ) which considers global modularity and local modularity together. LGQ adopts a suitable module feature adjustable parameter to control the balance of global detecting capability and local search capability in Protein-Protein Interactions (PPI) Network. Furthermore, we develop a new protein complex mining algorithm called Best Neighbour and Local-Global Quantification (BN-LGQ) which integrates the best neighbour node and modularity increment. BN-LGQ expands the protein complex by fast searching the best neighbour node of the current cluster and by calculating the modularity increment as a metric to determine whether the best neighbour node can join the current cluster. The experimental results show BN-LGQ performs a better accuracy on predicting protein complexes and has a higher match with the reference protein complexes than MCL and MCODE algorithms. Moreover, BN-LGQ can effectively discover protein complexes with better biological significance in the PPI network.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Mining bioinformatics data is an emerging area at the intersection between bioinformatics and data mining. The objective of IJDMB is to facilitate collaboration between data mining researchers and bioinformaticians by presenting cutting edge research topics and methodologies in the area of data mining for bioinformatics. This perspective acknowledges the inter-disciplinary nature of research in data mining and bioinformatics and provides a unified forum for researchers/practitioners/students/policy makers to share the latest research and developments in this fast growing multi-disciplinary research area.
期刊最新文献
Data mining based integration method of infant critical and critical information in modern hospital Fast retrieval method of biomedical literature based on feature mining Research on Cloud Storage Biological Data De duplication Method Based on Simhash Algorithm Identification of disease-related miRNAs based on Weighted K-Nearest Known Neighbors and Inductive Matrix Completion Diagnosis of Parkinson’s disease genes using LSTM and MLP based multi-feature extraction methods
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1