颗粒支持向量机识别未知结构类型的蛋白质。

IF 0.2 4区 生物学 Q4 MATHEMATICAL & COMPUTATIONAL BIOLOGY International Journal of Data Mining and Bioinformatics Pub Date : 2015-01-01 DOI:10.1504/ijdmb.2015.070065
Rohayanti Hassan, Razib M Othman, Zuraini A Shah
{"title":"颗粒支持向量机识别未知结构类型的蛋白质。","authors":"Rohayanti Hassan,&nbsp;Razib M Othman,&nbsp;Zuraini A Shah","doi":"10.1504/ijdmb.2015.070065","DOIUrl":null,"url":null,"abstract":"<p><p>To date, classification of structural class using local protein structure rather than the whole structure has been gaining widespread attention. It is noted that the structural class lies in local composition or arrangement of secondary structure, while the threshold-based classification method has restricted rules in determining these structural classes. As a consequence, some of the structures are unknown. In order to determine these unknown structural classes, we propose a fusion algorithm, abbreviated as GSVM-SigLpsSCPred (Granular Support Vector Machine--with Significant Local protein structure for Structural Class Prediction), which consists of two major components, which are: optimal local protein structure to represent the feature vector and granular support vector machine to predict the unknown structural classes. The results highlight the performance of GSVM-SigLpsSCPred as an alternative computational method for low-identity sequences.</p>","PeriodicalId":54964,"journal":{"name":"International Journal of Data Mining and Bioinformatics","volume":"12 4","pages":"451-67"},"PeriodicalIF":0.2000,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1504/ijdmb.2015.070065","citationCount":"0","resultStr":"{\"title\":\"Granular support vector machine to identify unknown structural classes of protein.\",\"authors\":\"Rohayanti Hassan,&nbsp;Razib M Othman,&nbsp;Zuraini A Shah\",\"doi\":\"10.1504/ijdmb.2015.070065\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>To date, classification of structural class using local protein structure rather than the whole structure has been gaining widespread attention. It is noted that the structural class lies in local composition or arrangement of secondary structure, while the threshold-based classification method has restricted rules in determining these structural classes. As a consequence, some of the structures are unknown. In order to determine these unknown structural classes, we propose a fusion algorithm, abbreviated as GSVM-SigLpsSCPred (Granular Support Vector Machine--with Significant Local protein structure for Structural Class Prediction), which consists of two major components, which are: optimal local protein structure to represent the feature vector and granular support vector machine to predict the unknown structural classes. The results highlight the performance of GSVM-SigLpsSCPred as an alternative computational method for low-identity sequences.</p>\",\"PeriodicalId\":54964,\"journal\":{\"name\":\"International Journal of Data Mining and Bioinformatics\",\"volume\":\"12 4\",\"pages\":\"451-67\"},\"PeriodicalIF\":0.2000,\"publicationDate\":\"2015-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1504/ijdmb.2015.070065\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Data Mining and Bioinformatics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1504/ijdmb.2015.070065\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Data Mining and Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1504/ijdmb.2015.070065","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

目前,利用蛋白质局部结构而非整体结构进行结构类分类已受到广泛关注。指出结构类存在于二级结构的局部组成或排列中,而基于阈值的分类方法在确定这些结构类时存在规则限制。因此,有些结构是未知的。为了确定这些未知的结构类别,我们提出了一种融合算法,简称为GSVM-SigLpsSCPred (Granular Support Vector Machine- with Significant Local protein structure for structural Class Prediction),该算法由两大部分组成,即最优局部蛋白质结构表示特征向量和颗粒支持向量机预测未知结构类别。结果表明,GSVM-SigLpsSCPred作为一种低恒等序列的替代计算方法具有良好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Granular support vector machine to identify unknown structural classes of protein.

To date, classification of structural class using local protein structure rather than the whole structure has been gaining widespread attention. It is noted that the structural class lies in local composition or arrangement of secondary structure, while the threshold-based classification method has restricted rules in determining these structural classes. As a consequence, some of the structures are unknown. In order to determine these unknown structural classes, we propose a fusion algorithm, abbreviated as GSVM-SigLpsSCPred (Granular Support Vector Machine--with Significant Local protein structure for Structural Class Prediction), which consists of two major components, which are: optimal local protein structure to represent the feature vector and granular support vector machine to predict the unknown structural classes. The results highlight the performance of GSVM-SigLpsSCPred as an alternative computational method for low-identity sequences.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Mining bioinformatics data is an emerging area at the intersection between bioinformatics and data mining. The objective of IJDMB is to facilitate collaboration between data mining researchers and bioinformaticians by presenting cutting edge research topics and methodologies in the area of data mining for bioinformatics. This perspective acknowledges the inter-disciplinary nature of research in data mining and bioinformatics and provides a unified forum for researchers/practitioners/students/policy makers to share the latest research and developments in this fast growing multi-disciplinary research area.
期刊最新文献
Data mining based integration method of infant critical and critical information in modern hospital Fast retrieval method of biomedical literature based on feature mining Research on Cloud Storage Biological Data De duplication Method Based on Simhash Algorithm Identification of disease-related miRNAs based on Weighted K-Nearest Known Neighbors and Inductive Matrix Completion Diagnosis of Parkinson’s disease genes using LSTM and MLP based multi-feature extraction methods
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1