应用于微阵列数据的特征选择和特征提取方法综述

Q1 Biochemistry, Genetics and Molecular Biology Advances in Bioinformatics Pub Date : 2015-01-01 Epub Date: 2015-06-11 DOI:10.1155/2015/198363
Zena M Hira, Duncan F Gillies
{"title":"应用于微阵列数据的特征选择和特征提取方法综述","authors":"Zena M Hira, Duncan F Gillies","doi":"10.1155/2015/198363","DOIUrl":null,"url":null,"abstract":"<p><p>We summarise various ways of performing dimensionality reduction on high-dimensional microarray data. Many different feature selection and feature extraction methods exist and they are being widely used. All these methods aim to remove redundant and irrelevant features so that classification of new instances will be more accurate. A popular source of data is microarrays, a biological platform for gathering gene expressions. Analysing microarrays can be difficult due to the size of the data they provide. In addition the complicated relations among the different genes make analysis more difficult and removing excess features can improve the quality of the results. We present some of the most popular methods for selecting significant features and provide a comparison between them. Their advantages and disadvantages are outlined in order to provide a clearer idea of when to use each one of them for saving computational time and resources. </p>","PeriodicalId":39059,"journal":{"name":"Advances in Bioinformatics","volume":"2015 ","pages":"198363"},"PeriodicalIF":0.0000,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4480804/pdf/","citationCount":"0","resultStr":"{\"title\":\"A Review of Feature Selection and Feature Extraction Methods Applied on Microarray Data.\",\"authors\":\"Zena M Hira, Duncan F Gillies\",\"doi\":\"10.1155/2015/198363\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We summarise various ways of performing dimensionality reduction on high-dimensional microarray data. Many different feature selection and feature extraction methods exist and they are being widely used. All these methods aim to remove redundant and irrelevant features so that classification of new instances will be more accurate. A popular source of data is microarrays, a biological platform for gathering gene expressions. Analysing microarrays can be difficult due to the size of the data they provide. In addition the complicated relations among the different genes make analysis more difficult and removing excess features can improve the quality of the results. We present some of the most popular methods for selecting significant features and provide a comparison between them. Their advantages and disadvantages are outlined in order to provide a clearer idea of when to use each one of them for saving computational time and resources. </p>\",\"PeriodicalId\":39059,\"journal\":{\"name\":\"Advances in Bioinformatics\",\"volume\":\"2015 \",\"pages\":\"198363\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4480804/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Bioinformatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2015/198363\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2015/6/11 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2015/198363","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2015/6/11 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

摘要

我们总结了对高维微阵列数据进行降维处理的各种方法。目前有许多不同的特征选择和特征提取方法,并得到了广泛应用。所有这些方法都旨在去除冗余和不相关的特征,从而使新实例的分类更加准确。微阵列是一种收集基因表达的生物平台,也是一种常用的数据源。由于微阵列提供的数据量很大,因此分析起来比较困难。此外,不同基因之间的复杂关系也增加了分析的难度,而去除多余的特征可以提高分析结果的质量。我们介绍了一些最常用的选择重要特征的方法,并对它们进行了比较。我们概述了这些方法的优缺点,以便更清楚地了解何时使用这些方法来节省计算时间和资源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Review of Feature Selection and Feature Extraction Methods Applied on Microarray Data.

We summarise various ways of performing dimensionality reduction on high-dimensional microarray data. Many different feature selection and feature extraction methods exist and they are being widely used. All these methods aim to remove redundant and irrelevant features so that classification of new instances will be more accurate. A popular source of data is microarrays, a biological platform for gathering gene expressions. Analysing microarrays can be difficult due to the size of the data they provide. In addition the complicated relations among the different genes make analysis more difficult and removing excess features can improve the quality of the results. We present some of the most popular methods for selecting significant features and provide a comparison between them. Their advantages and disadvantages are outlined in order to provide a clearer idea of when to use each one of them for saving computational time and resources.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Bioinformatics
Advances in Bioinformatics Biochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (miscellaneous)
自引率
0.00%
发文量
0
期刊最新文献
Computational Genomics A Guide to RNAseq Data Analysis Using Bioinformatics Approaches Computational Metabolomics Bioinformatics in Personalized Medicine Bioinformatics Tools for Gene and Genome Annotation Analysis of Microbes for Synthetic Biology and Cancer Biology Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1