{"title":"基底神经节在初级听觉皮层产生感受野中的作用及其可塑性机制。","authors":"I G Silkis","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>We suggest a mechanism for creating receptive fields of neurons in the primary auditory cortex (A1) and ventral part of the medial geniculate body (MGBv) in which the \"direct\" pathway through the basal ganglia participates. Dopamine released in the striatum in response to appearance of a sound tone promotes the induction of LTP of the efficacy of \"strong\" inputs and LTD of \"weak\" inputs from A1 to striatonigral cells due to activation of D1 receptors on these cells. Subsequent reorganization of neuronal activity in the network A1 field--basal ganglia--MGBv--A1 field results in a disinhibition of MGBv neuron activity, contrasting amplification of neural representation of a sound tone in MGBv and A1 field, and sharpening the receptive fields. Plastic shift of neuronal receptive fields is based on modification of efficacy of synaptic transmissions between the neocortex and striatum, and between all units of thalamocortical loop. Synaptic modification could be promoted by synchronization of activity of neurons which is based on the high-frequency oscillations relying on interdependent functioning of inhibitory cells in the considered loops.</p>","PeriodicalId":39939,"journal":{"name":"Uspekhi Fiziologicheskikh Nauk","volume":"46 3","pages":"60-75"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"[The role of the Basal Ganglia in Creating Receptive Fields in the Primary Auditory Cortex and Mechanisms of their Plasticity].\",\"authors\":\"I G Silkis\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We suggest a mechanism for creating receptive fields of neurons in the primary auditory cortex (A1) and ventral part of the medial geniculate body (MGBv) in which the \\\"direct\\\" pathway through the basal ganglia participates. Dopamine released in the striatum in response to appearance of a sound tone promotes the induction of LTP of the efficacy of \\\"strong\\\" inputs and LTD of \\\"weak\\\" inputs from A1 to striatonigral cells due to activation of D1 receptors on these cells. Subsequent reorganization of neuronal activity in the network A1 field--basal ganglia--MGBv--A1 field results in a disinhibition of MGBv neuron activity, contrasting amplification of neural representation of a sound tone in MGBv and A1 field, and sharpening the receptive fields. Plastic shift of neuronal receptive fields is based on modification of efficacy of synaptic transmissions between the neocortex and striatum, and between all units of thalamocortical loop. Synaptic modification could be promoted by synchronization of activity of neurons which is based on the high-frequency oscillations relying on interdependent functioning of inhibitory cells in the considered loops.</p>\",\"PeriodicalId\":39939,\"journal\":{\"name\":\"Uspekhi Fiziologicheskikh Nauk\",\"volume\":\"46 3\",\"pages\":\"60-75\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Uspekhi Fiziologicheskikh Nauk\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Uspekhi Fiziologicheskikh Nauk","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
[The role of the Basal Ganglia in Creating Receptive Fields in the Primary Auditory Cortex and Mechanisms of their Plasticity].
We suggest a mechanism for creating receptive fields of neurons in the primary auditory cortex (A1) and ventral part of the medial geniculate body (MGBv) in which the "direct" pathway through the basal ganglia participates. Dopamine released in the striatum in response to appearance of a sound tone promotes the induction of LTP of the efficacy of "strong" inputs and LTD of "weak" inputs from A1 to striatonigral cells due to activation of D1 receptors on these cells. Subsequent reorganization of neuronal activity in the network A1 field--basal ganglia--MGBv--A1 field results in a disinhibition of MGBv neuron activity, contrasting amplification of neural representation of a sound tone in MGBv and A1 field, and sharpening the receptive fields. Plastic shift of neuronal receptive fields is based on modification of efficacy of synaptic transmissions between the neocortex and striatum, and between all units of thalamocortical loop. Synaptic modification could be promoted by synchronization of activity of neurons which is based on the high-frequency oscillations relying on interdependent functioning of inhibitory cells in the considered loops.
期刊介绍:
The journal publishes reviews on various aspects of physiology and also original articles concerned with fundamental problems, based both on the data available in literature and on the experimental results obtained by the contributor.