icuARM-II:提高儿科重症监护病房个性化风险预测的可靠性。

Chih-Wen Cheng, Nikhil Chanani, Kevin Maher, Wang
{"title":"icuARM-II:提高儿科重症监护病房个性化风险预测的可靠性。","authors":"Chih-Wen Cheng, Nikhil Chanani, Kevin Maher, Wang","doi":"10.1145/2649387.2649440","DOIUrl":null,"url":null,"abstract":"<p><p>Clinicians in intensive care units (ICUs) rely on standardized scores as risk prediction models to predict a patient's vulnerability to life-threatening events. Conventional Current scales calculate scores from a fixed set of conditions collected within a specific time window. However, modern monitoring technologies generate complex, temporal, and multimodal patient data that conventional prediction models scales cannot fully utilize. Thus, a more sophisticated model is needed to tailor individual characteristics and incorporate multiple temporal modalities for a personalized risk prediction. Furthermore, most scales models focus on adult patients. To address this needdeficiency, we propose a newly designed ICU risk prediction system, called icuARM-II, using a large-scaled pediatric ICU database from Children's Healthcare of Atlanta. This novel database contains clinical data collected in 5,739 ICU visits from 4,975 patients. We propose a temporal association rule mining framework giving clinicians a potential to perform predict risks prediction based on all available patient conditions without being restricted by a fixed observation window. We also develop a new metric that can rigidly assesses the reliability of all all generated association rules. In addition, the icuARM-II features an interactive user interface. Using the icuARM-II, our results demonstrated showed a use case of short-term mortality prediction using lab testing results, which demonstrated a potential new solution for reliable ICU risk prediction using personalized clinical data in a previously neglected population.</p>","PeriodicalId":72044,"journal":{"name":"ACM-BCB ... ... : the ... ACM Conference on Bioinformatics, Computational Biology and Biomedicine. ACM Conference on Bioinformatics, Computational Biology and Biomedicine","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2014-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4983419/pdf/nihms805837.pdf","citationCount":"0","resultStr":"{\"title\":\"icuARM-II: improving the reliability of personalized risk prediction in pediatric intensive care units.\",\"authors\":\"Chih-Wen Cheng, Nikhil Chanani, Kevin Maher, Wang\",\"doi\":\"10.1145/2649387.2649440\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Clinicians in intensive care units (ICUs) rely on standardized scores as risk prediction models to predict a patient's vulnerability to life-threatening events. Conventional Current scales calculate scores from a fixed set of conditions collected within a specific time window. However, modern monitoring technologies generate complex, temporal, and multimodal patient data that conventional prediction models scales cannot fully utilize. Thus, a more sophisticated model is needed to tailor individual characteristics and incorporate multiple temporal modalities for a personalized risk prediction. Furthermore, most scales models focus on adult patients. To address this needdeficiency, we propose a newly designed ICU risk prediction system, called icuARM-II, using a large-scaled pediatric ICU database from Children's Healthcare of Atlanta. This novel database contains clinical data collected in 5,739 ICU visits from 4,975 patients. We propose a temporal association rule mining framework giving clinicians a potential to perform predict risks prediction based on all available patient conditions without being restricted by a fixed observation window. We also develop a new metric that can rigidly assesses the reliability of all all generated association rules. In addition, the icuARM-II features an interactive user interface. Using the icuARM-II, our results demonstrated showed a use case of short-term mortality prediction using lab testing results, which demonstrated a potential new solution for reliable ICU risk prediction using personalized clinical data in a previously neglected population.</p>\",\"PeriodicalId\":72044,\"journal\":{\"name\":\"ACM-BCB ... ... : the ... ACM Conference on Bioinformatics, Computational Biology and Biomedicine. ACM Conference on Bioinformatics, Computational Biology and Biomedicine\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4983419/pdf/nihms805837.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM-BCB ... ... : the ... ACM Conference on Bioinformatics, Computational Biology and Biomedicine. ACM Conference on Bioinformatics, Computational Biology and Biomedicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2649387.2649440\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM-BCB ... ... : the ... ACM Conference on Bioinformatics, Computational Biology and Biomedicine. ACM Conference on Bioinformatics, Computational Biology and Biomedicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2649387.2649440","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

重症监护室(ICU)的临床医生依靠标准化评分作为风险预测模型,来预测病人是否容易发生危及生命的事件。传统的电流量表根据在特定时间窗口内收集到的一组固定条件计算分数。然而,现代监测技术会产生复杂的、时间性的和多模态的患者数据,传统的预测模型量表无法充分利用这些数据。因此,需要一个更复杂的模型来调整个体特征,并结合多种时间模式进行个性化风险预测。此外,大多数量表模型都侧重于成年患者。为了解决这一不足,我们利用亚特兰大儿童医疗保健中心的大型儿科 ICU 数据库,提出了一种新设计的 ICU 风险预测系统,称为 icuARM-II。这个新型数据库包含从 4975 名患者的 5739 次 ICU 访问中收集的临床数据。我们提出了一种时间关联规则挖掘框架,使临床医生可以根据所有可用的患者情况进行风险预测,而不受固定观察窗口的限制。我们还开发了一种新指标,可以严格评估所有生成关联规则的可靠性。此外,icuARM-II 还具有交互式用户界面。利用 icuARM-II,我们的成果展示了一个利用实验室检测结果预测短期死亡率的用例,这为利用个性化临床数据在以前被忽视的人群中进行可靠的 ICU 风险预测提供了一个潜在的新解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
icuARM-II: improving the reliability of personalized risk prediction in pediatric intensive care units.

Clinicians in intensive care units (ICUs) rely on standardized scores as risk prediction models to predict a patient's vulnerability to life-threatening events. Conventional Current scales calculate scores from a fixed set of conditions collected within a specific time window. However, modern monitoring technologies generate complex, temporal, and multimodal patient data that conventional prediction models scales cannot fully utilize. Thus, a more sophisticated model is needed to tailor individual characteristics and incorporate multiple temporal modalities for a personalized risk prediction. Furthermore, most scales models focus on adult patients. To address this needdeficiency, we propose a newly designed ICU risk prediction system, called icuARM-II, using a large-scaled pediatric ICU database from Children's Healthcare of Atlanta. This novel database contains clinical data collected in 5,739 ICU visits from 4,975 patients. We propose a temporal association rule mining framework giving clinicians a potential to perform predict risks prediction based on all available patient conditions without being restricted by a fixed observation window. We also develop a new metric that can rigidly assesses the reliability of all all generated association rules. In addition, the icuARM-II features an interactive user interface. Using the icuARM-II, our results demonstrated showed a use case of short-term mortality prediction using lab testing results, which demonstrated a potential new solution for reliable ICU risk prediction using personalized clinical data in a previously neglected population.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multi-Group Tensor Canonical Correlation Analysis. Supervised Pretraining through Contrastive Categorical Positive Samplings to Improve COVID-19 Mortality Prediction. Transformer-Based Named Entity Recognition for Parsing Clinical Trial Eligibility Criteria. Joint Learning for Biomedical NER and Entity Normalization: Encoding Schemes, Counterfactual Examples, and Zero-Shot Evaluation. Assigning ICD-O-3 Codes to Pathology Reports using Neural Multi-Task Training with Hierarchical Regularization.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1