{"title":"高效转导癌症干细胞的方法。","authors":"Kiera Walker, Anita Hjelmeland","doi":"10.14343/JCSCR.2014.2e1008","DOIUrl":null,"url":null,"abstract":"<p><p>Ectopic gene expression through introduction of cDNA and gene silencing by RNA interference each facilitate the elucidation of molecular pathways in both normal and pathologic states. As transfection efficiency in some primary and established cells is low, lentivirus based expression systems with high infection rates can improve experimental design. For example, glioblastoma cells and particularly the cancer stem cell (CSC) fraction can be difficult to transfect but are amenable to viral infection. Greater utilization of lentivirus for expression of cDNA and shRNA in CSCs may be limited due to technical challenges, including elimination of pro-differentiating fetal bovine serum (FBS). We therefore generated a subline of 293Ts that can proliferate and efficiently produce virus in CSC media, designated CSC293Ts. We provide detailed protocols for the generation of CSC293Ts and for the production of lentivirus for CSC infection using glioblastoma as a model. Our data demonstrate that serum free media from CSC293Ts consistently produces greater than 80% infection rates without virus concentration. We believe that the detailed protocols provided here can be adapted for multiple cell types for broad utility.</p>","PeriodicalId":90887,"journal":{"name":"Journal of cancer stem cell research","volume":"2 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4989917/pdf/nihms-782626.pdf","citationCount":"0","resultStr":"{\"title\":\"Method for Efficient Transduction of Cancer Stem Cells.\",\"authors\":\"Kiera Walker, Anita Hjelmeland\",\"doi\":\"10.14343/JCSCR.2014.2e1008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Ectopic gene expression through introduction of cDNA and gene silencing by RNA interference each facilitate the elucidation of molecular pathways in both normal and pathologic states. As transfection efficiency in some primary and established cells is low, lentivirus based expression systems with high infection rates can improve experimental design. For example, glioblastoma cells and particularly the cancer stem cell (CSC) fraction can be difficult to transfect but are amenable to viral infection. Greater utilization of lentivirus for expression of cDNA and shRNA in CSCs may be limited due to technical challenges, including elimination of pro-differentiating fetal bovine serum (FBS). We therefore generated a subline of 293Ts that can proliferate and efficiently produce virus in CSC media, designated CSC293Ts. We provide detailed protocols for the generation of CSC293Ts and for the production of lentivirus for CSC infection using glioblastoma as a model. Our data demonstrate that serum free media from CSC293Ts consistently produces greater than 80% infection rates without virus concentration. We believe that the detailed protocols provided here can be adapted for multiple cell types for broad utility.</p>\",\"PeriodicalId\":90887,\"journal\":{\"name\":\"Journal of cancer stem cell research\",\"volume\":\"2 \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4989917/pdf/nihms-782626.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of cancer stem cell research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14343/JCSCR.2014.2e1008\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2014/12/1 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of cancer stem cell research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14343/JCSCR.2014.2e1008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2014/12/1 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
Method for Efficient Transduction of Cancer Stem Cells.
Ectopic gene expression through introduction of cDNA and gene silencing by RNA interference each facilitate the elucidation of molecular pathways in both normal and pathologic states. As transfection efficiency in some primary and established cells is low, lentivirus based expression systems with high infection rates can improve experimental design. For example, glioblastoma cells and particularly the cancer stem cell (CSC) fraction can be difficult to transfect but are amenable to viral infection. Greater utilization of lentivirus for expression of cDNA and shRNA in CSCs may be limited due to technical challenges, including elimination of pro-differentiating fetal bovine serum (FBS). We therefore generated a subline of 293Ts that can proliferate and efficiently produce virus in CSC media, designated CSC293Ts. We provide detailed protocols for the generation of CSC293Ts and for the production of lentivirus for CSC infection using glioblastoma as a model. Our data demonstrate that serum free media from CSC293Ts consistently produces greater than 80% infection rates without virus concentration. We believe that the detailed protocols provided here can be adapted for multiple cell types for broad utility.