度序列随机实现的快速顺序创建。

Q3 Mathematics Internet Mathematics Pub Date : 2016-01-01 Epub Date: 2016-03-24 DOI:10.1080/15427951.2016.1164768
Brian Cloteaux
{"title":"度序列随机实现的快速顺序创建。","authors":"Brian Cloteaux","doi":"10.1080/15427951.2016.1164768","DOIUrl":null,"url":null,"abstract":"<p><p>We examine the problem of creating random realizations of very large degree sequences. Although fast in practice, the Markov chain Monte Carlo (MCMC) method for selecting a realization has limited usefulness for creating large graphs because of memory constraints. Instead, we focus on sequential importance sampling (SIS) schemes for random graph creation. A difficulty with SIS schemes is assuring that they terminate in a reasonable amount of time. We introduce a new sampling method by which we guarantee termination while achieving speed comparable to the MCMC method.</p>","PeriodicalId":38105,"journal":{"name":"Internet Mathematics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/15427951.2016.1164768","citationCount":"16","resultStr":"{\"title\":\"Fast Sequential Creation of Random Realizations of Degree Sequences.\",\"authors\":\"Brian Cloteaux\",\"doi\":\"10.1080/15427951.2016.1164768\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We examine the problem of creating random realizations of very large degree sequences. Although fast in practice, the Markov chain Monte Carlo (MCMC) method for selecting a realization has limited usefulness for creating large graphs because of memory constraints. Instead, we focus on sequential importance sampling (SIS) schemes for random graph creation. A difficulty with SIS schemes is assuring that they terminate in a reasonable amount of time. We introduce a new sampling method by which we guarantee termination while achieving speed comparable to the MCMC method.</p>\",\"PeriodicalId\":38105,\"journal\":{\"name\":\"Internet Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/15427951.2016.1164768\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Internet Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/15427951.2016.1164768\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2016/3/24 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Internet Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/15427951.2016.1164768","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2016/3/24 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 16

摘要

我们研究了创建非常大度序列的随机实现的问题。虽然在实践中速度很快,但由于内存限制,用于选择实现的马尔可夫链蒙特卡罗(MCMC)方法在创建大型图形时用处有限。相反,我们专注于随机图创建的顺序重要抽样(SIS)方案。SIS方案的一个难点是确保它们在合理的时间内终止。我们介绍了一种新的采样方法,在保证终止的同时达到与MCMC方法相当的速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fast Sequential Creation of Random Realizations of Degree Sequences.

We examine the problem of creating random realizations of very large degree sequences. Although fast in practice, the Markov chain Monte Carlo (MCMC) method for selecting a realization has limited usefulness for creating large graphs because of memory constraints. Instead, we focus on sequential importance sampling (SIS) schemes for random graph creation. A difficulty with SIS schemes is assuring that they terminate in a reasonable amount of time. We introduce a new sampling method by which we guarantee termination while achieving speed comparable to the MCMC method.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Internet Mathematics
Internet Mathematics Mathematics-Applied Mathematics
自引率
0.00%
发文量
0
期刊最新文献
Graph search via star sampling with and without replacement Preferential Placement for Community Structure Formation A Multi-type Preferential Attachment Tree Editorial Board EOV A Theory of Network Security: Principles of Natural Selection and Combinatorics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1