{"title":"假设非恒定辍学风险的协变量联合建模与审查过程。","authors":"Miran A Jaffa, Ayad A Jaffa","doi":"10.1007/s10260-015-0302-2","DOIUrl":null,"url":null,"abstract":"<p><p>In this manuscript we propose a novel approach for the analysis of longitudinal data that have informative dropout. We jointly model the slopes of covariates of interest and the censoring process for which we assume a survival model with logistic non-constant dropout hazard in a likelihood function that is integrated over the random effects. Maximization of the marginal likelihood function results in acquiring maximum likelihood estimates for the population slopes and empirical Bayes estimates for the individual slopes that are predicted using Gaussian quadrature. Our simulation study results indicated that the performance of this model is superior in terms of accuracy and validity of the estimates compared to other models such as logistic non-constant hazard censoring model that does not include covariates, logistic constant censoring model with covariates, bootstrapping approach as well as mixed models. Sensitivity analyses for the dropout hazard and non-Gaussian errors were also undertaken to assess robustness of the proposed approach to such violations. Our model was illustrated using a cohort of renal transplant patients with estimated glomerular filtration rate as the outcome of interest.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2016-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10260-015-0302-2","citationCount":"1","resultStr":"{\"title\":\"Joint Modeling of Covariates and Censoring Process Assuming Non-Constant Dropout Hazard.\",\"authors\":\"Miran A Jaffa, Ayad A Jaffa\",\"doi\":\"10.1007/s10260-015-0302-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this manuscript we propose a novel approach for the analysis of longitudinal data that have informative dropout. We jointly model the slopes of covariates of interest and the censoring process for which we assume a survival model with logistic non-constant dropout hazard in a likelihood function that is integrated over the random effects. Maximization of the marginal likelihood function results in acquiring maximum likelihood estimates for the population slopes and empirical Bayes estimates for the individual slopes that are predicted using Gaussian quadrature. Our simulation study results indicated that the performance of this model is superior in terms of accuracy and validity of the estimates compared to other models such as logistic non-constant hazard censoring model that does not include covariates, logistic constant censoring model with covariates, bootstrapping approach as well as mixed models. Sensitivity analyses for the dropout hazard and non-Gaussian errors were also undertaken to assess robustness of the proposed approach to such violations. Our model was illustrated using a cohort of renal transplant patients with estimated glomerular filtration rate as the outcome of interest.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2016-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s10260-015-0302-2\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10260-015-0302-2\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2015/4/1 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10260-015-0302-2","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2015/4/1 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Joint Modeling of Covariates and Censoring Process Assuming Non-Constant Dropout Hazard.
In this manuscript we propose a novel approach for the analysis of longitudinal data that have informative dropout. We jointly model the slopes of covariates of interest and the censoring process for which we assume a survival model with logistic non-constant dropout hazard in a likelihood function that is integrated over the random effects. Maximization of the marginal likelihood function results in acquiring maximum likelihood estimates for the population slopes and empirical Bayes estimates for the individual slopes that are predicted using Gaussian quadrature. Our simulation study results indicated that the performance of this model is superior in terms of accuracy and validity of the estimates compared to other models such as logistic non-constant hazard censoring model that does not include covariates, logistic constant censoring model with covariates, bootstrapping approach as well as mixed models. Sensitivity analyses for the dropout hazard and non-Gaussian errors were also undertaken to assess robustness of the proposed approach to such violations. Our model was illustrated using a cohort of renal transplant patients with estimated glomerular filtration rate as the outcome of interest.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.