人脑连接体数据的集成可视化。

Huang Li, Shiaofen Fang, Joaquin Goni, Joey A Contreras, Yanhua Liang, Chengtao Cai, John D West, Shannon L Risacher, Yang Wang, Olaf Sporns, Andrew J Saykin, Li Shen
{"title":"人脑连接体数据的集成可视化。","authors":"Huang Li,&nbsp;Shiaofen Fang,&nbsp;Joaquin Goni,&nbsp;Joey A Contreras,&nbsp;Yanhua Liang,&nbsp;Chengtao Cai,&nbsp;John D West,&nbsp;Shannon L Risacher,&nbsp;Yang Wang,&nbsp;Olaf Sporns,&nbsp;Andrew J Saykin,&nbsp;Li Shen","doi":"10.1007/978-3-319-23344-4_29","DOIUrl":null,"url":null,"abstract":"<p><p>Visualization plays a vital role in the analysis of multi-modal neuroimaging data. A major challenge in neuroimaging visualization is how to integrate structural, functional and connectivity data to form a comprehensive visual context for data exploration, quality control, and hypothesis discovery. We develop a new integrated visualization solution for brain imaging data by combining scientific and information visualization techniques within the context of the same anatomic structure. New surface texture techniques are developed to map non-spatial attributes onto the brain surfaces from MRI scans. Two types of non-spatial information are represented: (1) time-series data from resting-state functional MRI measuring brain activation; (2) network properties derived from structural connectivity data for different groups of subjects, which may help guide the detection of differentiation features. Through visual exploration, this integrated solution can help identify brain regions with highly correlated functional activations as well as their activation patterns. Visual detection of differentiation features can also potentially discover image based phenotypic biomarkers for brain diseases.</p>","PeriodicalId":91220,"journal":{"name":"Brain Informatics and Health : 8th International Conference, BIH 2015, London, UK, August 30-September 2, 2015 : proceedings. BIH (Conference) (8th : 2015 : London, England)","volume":"9250 ","pages":"295-305"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/978-3-319-23344-4_29","citationCount":"7","resultStr":"{\"title\":\"Integrated Visualization of Human Brain Connectome Data.\",\"authors\":\"Huang Li,&nbsp;Shiaofen Fang,&nbsp;Joaquin Goni,&nbsp;Joey A Contreras,&nbsp;Yanhua Liang,&nbsp;Chengtao Cai,&nbsp;John D West,&nbsp;Shannon L Risacher,&nbsp;Yang Wang,&nbsp;Olaf Sporns,&nbsp;Andrew J Saykin,&nbsp;Li Shen\",\"doi\":\"10.1007/978-3-319-23344-4_29\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Visualization plays a vital role in the analysis of multi-modal neuroimaging data. A major challenge in neuroimaging visualization is how to integrate structural, functional and connectivity data to form a comprehensive visual context for data exploration, quality control, and hypothesis discovery. We develop a new integrated visualization solution for brain imaging data by combining scientific and information visualization techniques within the context of the same anatomic structure. New surface texture techniques are developed to map non-spatial attributes onto the brain surfaces from MRI scans. Two types of non-spatial information are represented: (1) time-series data from resting-state functional MRI measuring brain activation; (2) network properties derived from structural connectivity data for different groups of subjects, which may help guide the detection of differentiation features. Through visual exploration, this integrated solution can help identify brain regions with highly correlated functional activations as well as their activation patterns. Visual detection of differentiation features can also potentially discover image based phenotypic biomarkers for brain diseases.</p>\",\"PeriodicalId\":91220,\"journal\":{\"name\":\"Brain Informatics and Health : 8th International Conference, BIH 2015, London, UK, August 30-September 2, 2015 : proceedings. BIH (Conference) (8th : 2015 : London, England)\",\"volume\":\"9250 \",\"pages\":\"295-305\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/978-3-319-23344-4_29\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brain Informatics and Health : 8th International Conference, BIH 2015, London, UK, August 30-September 2, 2015 : proceedings. BIH (Conference) (8th : 2015 : London, England)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/978-3-319-23344-4_29\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2015/8/21 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Informatics and Health : 8th International Conference, BIH 2015, London, UK, August 30-September 2, 2015 : proceedings. BIH (Conference) (8th : 2015 : London, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-319-23344-4_29","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2015/8/21 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

可视化在多模态神经影像数据分析中起着至关重要的作用。神经成像可视化的一个主要挑战是如何整合结构、功能和连接数据,形成一个全面的视觉环境,用于数据探索、质量控制和假设发现。我们通过在相同解剖结构的背景下结合科学和信息可视化技术,开发了一种新的脑成像数据集成可视化解决方案。开发了新的表面纹理技术,将非空间属性映射到MRI扫描的大脑表面。两种类型的非空间信息表现为:(1)静息状态功能MRI测量脑激活的时间序列数据;(2)从不同主体群体的结构连通性数据中得出的网络属性,有助于指导区分特征的检测。通过视觉探索,这个集成的解决方案可以帮助识别具有高度相关功能激活的大脑区域以及它们的激活模式。分化特征的视觉检测也可以潜在地发现基于图像的脑疾病表型生物标志物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Integrated Visualization of Human Brain Connectome Data.

Visualization plays a vital role in the analysis of multi-modal neuroimaging data. A major challenge in neuroimaging visualization is how to integrate structural, functional and connectivity data to form a comprehensive visual context for data exploration, quality control, and hypothesis discovery. We develop a new integrated visualization solution for brain imaging data by combining scientific and information visualization techniques within the context of the same anatomic structure. New surface texture techniques are developed to map non-spatial attributes onto the brain surfaces from MRI scans. Two types of non-spatial information are represented: (1) time-series data from resting-state functional MRI measuring brain activation; (2) network properties derived from structural connectivity data for different groups of subjects, which may help guide the detection of differentiation features. Through visual exploration, this integrated solution can help identify brain regions with highly correlated functional activations as well as their activation patterns. Visual detection of differentiation features can also potentially discover image based phenotypic biomarkers for brain diseases.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Towards Automated Processing and Analysis of Neuronal Big Data Acquired Using High-Resolution Brain-Chip Interfaces Implantable CMOS Fluorescent Imaging Devices Conclusion and Future Work Critical Elements for Connectivity Analysis of Brain Networks Pathological Brain Detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1