{"title":"基于各种发声测试的帕金森病检测多分类器框架","authors":"Mahnaz Behroozi, Ashkan Sami","doi":"10.1155/2016/6837498","DOIUrl":null,"url":null,"abstract":"<p><p>Recently, speech pattern analysis applications in building predictive telediagnosis and telemonitoring models for diagnosing Parkinson's disease (PD) have attracted many researchers. For this purpose, several datasets of voice samples exist; the UCI dataset named \"Parkinson Speech Dataset with Multiple Types of Sound Recordings\" has a variety of vocal tests, which include sustained vowels, words, numbers, and short sentences compiled from a set of speaking exercises for healthy and people with Parkinson's disease (PWP). Some researchers claim that summarizing the multiple recordings of each subject with the central tendency and dispersion metrics is an efficient strategy in building a predictive model for PD. However, they have overlooked the point that a PD patient may show more difficulty in pronouncing certain terms than the other terms. Thus, summarizing the vocal tests may lead into loss of valuable information. In order to address this issue, the classification setting must take what has been said into account. As a solution, we introduced a new framework that applies an independent classifier for each vocal test. The final classification result would be a majority vote from all of the classifiers. When our methodology comes with filter-based feature selection, it enhances classification accuracy up to 15%. </p>","PeriodicalId":45630,"journal":{"name":"International Journal of Telemedicine and Applications","volume":"2016 ","pages":"6837498"},"PeriodicalIF":3.1000,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4844904/pdf/","citationCount":"0","resultStr":"{\"title\":\"A Multiple-Classifier Framework for Parkinson's Disease Detection Based on Various Vocal Tests.\",\"authors\":\"Mahnaz Behroozi, Ashkan Sami\",\"doi\":\"10.1155/2016/6837498\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Recently, speech pattern analysis applications in building predictive telediagnosis and telemonitoring models for diagnosing Parkinson's disease (PD) have attracted many researchers. For this purpose, several datasets of voice samples exist; the UCI dataset named \\\"Parkinson Speech Dataset with Multiple Types of Sound Recordings\\\" has a variety of vocal tests, which include sustained vowels, words, numbers, and short sentences compiled from a set of speaking exercises for healthy and people with Parkinson's disease (PWP). Some researchers claim that summarizing the multiple recordings of each subject with the central tendency and dispersion metrics is an efficient strategy in building a predictive model for PD. However, they have overlooked the point that a PD patient may show more difficulty in pronouncing certain terms than the other terms. Thus, summarizing the vocal tests may lead into loss of valuable information. In order to address this issue, the classification setting must take what has been said into account. As a solution, we introduced a new framework that applies an independent classifier for each vocal test. The final classification result would be a majority vote from all of the classifiers. When our methodology comes with filter-based feature selection, it enhances classification accuracy up to 15%. </p>\",\"PeriodicalId\":45630,\"journal\":{\"name\":\"International Journal of Telemedicine and Applications\",\"volume\":\"2016 \",\"pages\":\"6837498\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2016-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4844904/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Telemedicine and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2016/6837498\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2016/4/12 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"HEALTH CARE SCIENCES & SERVICES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Telemedicine and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2016/6837498","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2016/4/12 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
A Multiple-Classifier Framework for Parkinson's Disease Detection Based on Various Vocal Tests.
Recently, speech pattern analysis applications in building predictive telediagnosis and telemonitoring models for diagnosing Parkinson's disease (PD) have attracted many researchers. For this purpose, several datasets of voice samples exist; the UCI dataset named "Parkinson Speech Dataset with Multiple Types of Sound Recordings" has a variety of vocal tests, which include sustained vowels, words, numbers, and short sentences compiled from a set of speaking exercises for healthy and people with Parkinson's disease (PWP). Some researchers claim that summarizing the multiple recordings of each subject with the central tendency and dispersion metrics is an efficient strategy in building a predictive model for PD. However, they have overlooked the point that a PD patient may show more difficulty in pronouncing certain terms than the other terms. Thus, summarizing the vocal tests may lead into loss of valuable information. In order to address this issue, the classification setting must take what has been said into account. As a solution, we introduced a new framework that applies an independent classifier for each vocal test. The final classification result would be a majority vote from all of the classifiers. When our methodology comes with filter-based feature selection, it enhances classification accuracy up to 15%.
期刊介绍:
The overall aim of the International Journal of Telemedicine and Applications is to bring together science and applications of medical practice and medical care at a distance as well as their supporting technologies such as, computing, communications, and networking technologies with emphasis on telemedicine techniques and telemedicine applications. It is directed at practicing engineers, academic researchers, as well as doctors, nurses, etc. Telemedicine is an information technology that enables doctors to perform medical consultations, diagnoses, and treatments, as well as medical education, away from patients. For example, doctors can remotely examine patients via remote viewing monitors and sound devices, and/or sampling physiological data using telecommunication. Telemedicine technology is applied to areas of emergency healthcare, videoconsulting, telecardiology, telepathology, teledermatology, teleophthalmology, teleoncology, telepsychiatry, teledentistry, etc. International Journal of Telemedicine and Applications will highlight the continued growth and new challenges in telemedicine, applications, and their supporting technologies, for both application development and basic research. Papers should emphasize original results or case studies relating to the theory and/or applications of telemedicine. Tutorial papers, especially those emphasizing multidisciplinary views of telemedicine, are also welcome. International Journal of Telemedicine and Applications employs a paperless, electronic submission and evaluation system to promote a rapid turnaround in the peer-review process.