{"title":"基于眼优势图的立体视差自适应神经形态回路。","authors":"Sheena Sharma, Priti Gupta, C M Markan","doi":"10.1155/2016/8751874","DOIUrl":null,"url":null,"abstract":"<p><p>Stereopsis or depth perception is a critical aspect of information processing in the brain and is computed from the positional shift or disparity between the images seen by the two eyes. Various algorithms and their hardware implementation that compute disparity in real time have been proposed; however, most of them compute disparity through complex mathematical calculations that are difficult to realize in hardware and are biologically unrealistic. The brain presumably uses simpler methods to extract depth information from the environment and hence newer methodologies that could perform stereopsis with brain like elegance need to be explored. This paper proposes an innovative aVLSI design that leverages the columnar organization of ocular dominance in the brain and uses time-staggered Winner Take All (ts-WTA) to adaptively create disparity tuned cells. Physiological findings support the presence of disparity cells in the visual cortex and show that these cells surface as a result of binocular stimulation received after birth. Therefore, creating in hardware cells that can learn different disparities with experience not only is novel but also is biologically more realistic. These disparity cells, when allowed to interact diffusively on a larger scale, can be used to adaptively create stable topological disparity maps in silicon. </p>","PeriodicalId":91144,"journal":{"name":"Neuroscience journal","volume":"2016 ","pages":"8751874"},"PeriodicalIF":0.0000,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2016/8751874","citationCount":"1","resultStr":"{\"title\":\"Adaptive Neuromorphic Circuit for Stereoscopic Disparity Using Ocular Dominance Map.\",\"authors\":\"Sheena Sharma, Priti Gupta, C M Markan\",\"doi\":\"10.1155/2016/8751874\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Stereopsis or depth perception is a critical aspect of information processing in the brain and is computed from the positional shift or disparity between the images seen by the two eyes. Various algorithms and their hardware implementation that compute disparity in real time have been proposed; however, most of them compute disparity through complex mathematical calculations that are difficult to realize in hardware and are biologically unrealistic. The brain presumably uses simpler methods to extract depth information from the environment and hence newer methodologies that could perform stereopsis with brain like elegance need to be explored. This paper proposes an innovative aVLSI design that leverages the columnar organization of ocular dominance in the brain and uses time-staggered Winner Take All (ts-WTA) to adaptively create disparity tuned cells. Physiological findings support the presence of disparity cells in the visual cortex and show that these cells surface as a result of binocular stimulation received after birth. Therefore, creating in hardware cells that can learn different disparities with experience not only is novel but also is biologically more realistic. These disparity cells, when allowed to interact diffusively on a larger scale, can be used to adaptively create stable topological disparity maps in silicon. </p>\",\"PeriodicalId\":91144,\"journal\":{\"name\":\"Neuroscience journal\",\"volume\":\"2016 \",\"pages\":\"8751874\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1155/2016/8751874\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuroscience journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2016/8751874\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2016/5/3 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroscience journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2016/8751874","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2016/5/3 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
Adaptive Neuromorphic Circuit for Stereoscopic Disparity Using Ocular Dominance Map.
Stereopsis or depth perception is a critical aspect of information processing in the brain and is computed from the positional shift or disparity between the images seen by the two eyes. Various algorithms and their hardware implementation that compute disparity in real time have been proposed; however, most of them compute disparity through complex mathematical calculations that are difficult to realize in hardware and are biologically unrealistic. The brain presumably uses simpler methods to extract depth information from the environment and hence newer methodologies that could perform stereopsis with brain like elegance need to be explored. This paper proposes an innovative aVLSI design that leverages the columnar organization of ocular dominance in the brain and uses time-staggered Winner Take All (ts-WTA) to adaptively create disparity tuned cells. Physiological findings support the presence of disparity cells in the visual cortex and show that these cells surface as a result of binocular stimulation received after birth. Therefore, creating in hardware cells that can learn different disparities with experience not only is novel but also is biologically more realistic. These disparity cells, when allowed to interact diffusively on a larger scale, can be used to adaptively create stable topological disparity maps in silicon.