Jong Bum Kim, Kyung Hwan Kim, Seong-Taek Yun, Gwi-Nam Bae
{"title":"使用浓度计检测碳纳米管工作场所释放的碳质气溶胶。","authors":"Jong Bum Kim, Kyung Hwan Kim, Seong-Taek Yun, Gwi-Nam Bae","doi":"10.1093/annhyg/mew025","DOIUrl":null,"url":null,"abstract":"OBJECTIVES Black carbon (BC) originating from various combustion sources has been extensively surveyed to characterize the effects of BC on global warming and human health, and many online monitors are available. In this study, BC was considered as a surrogate for carbon-based nanomaterials in an occupational health study. METHODS Specifically, BC concentrations were monitored continuously with an aethalometer for 24h at four carbon nanotube (CNT) workplaces located in rural, urban, and industrial areas, which had different background air pollution levels. Average BC concentrations for both nonworking (background) and working periods were compared with the recommended exposure limit (REL) of 1 μg m(-3) for elemental carbon that was suggested by the National Institute for Occupational Safety and Health (NIOSH). RESULTS Diurnal variation of BC concentrations indicated that BC measurements corresponded well with carbonaceous aerosols such as vehicle exhaust particles and CNT aerosols. In the rural CNT workplace, the average background BC concentration (0.36 μg m(-3)) was lower than the REL, but the BC concentration without background correction was higher than the REL during manufacturing hours. In this case, BC measurement is useful to estimate CNT exposure for comparison with the REL. Conversely, in the urban and industrial CNT workplaces, average background BC concentrations (2.05, 1.82, and 2.64 μg m(-3)) were well above the REL, and during working hours, BC concentrations were substantially higher than the background level at workplace C; however, BC concentrations showed no difference from the background levels at workplaces B and D. In these cases (B and D), it is hard to determine CNT exposure because of the substantial environmental exposures. CONCLUSION Most of the urban ambient BC concentrations were above the REL. Therefore, further analysis and test methods for carbonaceous aerosols need to be developed so that the exposure assessment can be easily carried out at CNT workplaces with high background BC levels such as in urban and industrial areas.","PeriodicalId":8458,"journal":{"name":"Annals of Occupational Hygiene","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/annhyg/mew025","citationCount":"4","resultStr":"{\"title\":\"Detection of Carbonaceous Aerosols Released in CNT Workplaces Using an Aethalometer.\",\"authors\":\"Jong Bum Kim, Kyung Hwan Kim, Seong-Taek Yun, Gwi-Nam Bae\",\"doi\":\"10.1093/annhyg/mew025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"OBJECTIVES Black carbon (BC) originating from various combustion sources has been extensively surveyed to characterize the effects of BC on global warming and human health, and many online monitors are available. In this study, BC was considered as a surrogate for carbon-based nanomaterials in an occupational health study. METHODS Specifically, BC concentrations were monitored continuously with an aethalometer for 24h at four carbon nanotube (CNT) workplaces located in rural, urban, and industrial areas, which had different background air pollution levels. Average BC concentrations for both nonworking (background) and working periods were compared with the recommended exposure limit (REL) of 1 μg m(-3) for elemental carbon that was suggested by the National Institute for Occupational Safety and Health (NIOSH). RESULTS Diurnal variation of BC concentrations indicated that BC measurements corresponded well with carbonaceous aerosols such as vehicle exhaust particles and CNT aerosols. In the rural CNT workplace, the average background BC concentration (0.36 μg m(-3)) was lower than the REL, but the BC concentration without background correction was higher than the REL during manufacturing hours. In this case, BC measurement is useful to estimate CNT exposure for comparison with the REL. Conversely, in the urban and industrial CNT workplaces, average background BC concentrations (2.05, 1.82, and 2.64 μg m(-3)) were well above the REL, and during working hours, BC concentrations were substantially higher than the background level at workplace C; however, BC concentrations showed no difference from the background levels at workplaces B and D. In these cases (B and D), it is hard to determine CNT exposure because of the substantial environmental exposures. CONCLUSION Most of the urban ambient BC concentrations were above the REL. Therefore, further analysis and test methods for carbonaceous aerosols need to be developed so that the exposure assessment can be easily carried out at CNT workplaces with high background BC levels such as in urban and industrial areas.\",\"PeriodicalId\":8458,\"journal\":{\"name\":\"Annals of Occupational Hygiene\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1093/annhyg/mew025\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Occupational Hygiene\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/annhyg/mew025\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2016/5/13 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Occupational Hygiene","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/annhyg/mew025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2016/5/13 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
Detection of Carbonaceous Aerosols Released in CNT Workplaces Using an Aethalometer.
OBJECTIVES Black carbon (BC) originating from various combustion sources has been extensively surveyed to characterize the effects of BC on global warming and human health, and many online monitors are available. In this study, BC was considered as a surrogate for carbon-based nanomaterials in an occupational health study. METHODS Specifically, BC concentrations were monitored continuously with an aethalometer for 24h at four carbon nanotube (CNT) workplaces located in rural, urban, and industrial areas, which had different background air pollution levels. Average BC concentrations for both nonworking (background) and working periods were compared with the recommended exposure limit (REL) of 1 μg m(-3) for elemental carbon that was suggested by the National Institute for Occupational Safety and Health (NIOSH). RESULTS Diurnal variation of BC concentrations indicated that BC measurements corresponded well with carbonaceous aerosols such as vehicle exhaust particles and CNT aerosols. In the rural CNT workplace, the average background BC concentration (0.36 μg m(-3)) was lower than the REL, but the BC concentration without background correction was higher than the REL during manufacturing hours. In this case, BC measurement is useful to estimate CNT exposure for comparison with the REL. Conversely, in the urban and industrial CNT workplaces, average background BC concentrations (2.05, 1.82, and 2.64 μg m(-3)) were well above the REL, and during working hours, BC concentrations were substantially higher than the background level at workplace C; however, BC concentrations showed no difference from the background levels at workplaces B and D. In these cases (B and D), it is hard to determine CNT exposure because of the substantial environmental exposures. CONCLUSION Most of the urban ambient BC concentrations were above the REL. Therefore, further analysis and test methods for carbonaceous aerosols need to be developed so that the exposure assessment can be easily carried out at CNT workplaces with high background BC levels such as in urban and industrial areas.