单变量系统的区域代理模型(ZSM)

IF 3.9 2区 工程技术 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Computers & Chemical Engineering Pub Date : 2023-06-01 DOI:10.1016/j.compchemeng.2023.108249
Srikar Venkataraman Srinivas, Iftekhar A Karimi
{"title":"单变量系统的区域代理模型(ZSM)","authors":"Srikar Venkataraman Srinivas,&nbsp;Iftekhar A Karimi","doi":"10.1016/j.compchemeng.2023.108249","DOIUrl":null,"url":null,"abstract":"<div><p>Many complex systems display distinctly different behaviors across regions, zones, or sub-domains. A single surrogate may not suffice in modelling such systems. A better approach would be to identify the various zones and model them individually. In this work, we propose a zone-wise surrogate modelling (ZSM) algorithm to identify various zones in a system's input domain based on a user-specified acceptable goodness of fit and recommend the best surrogate for each identified zone from a library of potential surrogates. We have assessed ZSM on ten case studies involving complex 1-D functions and compared its modelling performance against some non-linear and piecewise models. We also show how ZSM can help in global optimization using five complex multimodal functions and found that a ZSM-based approach successfully identifies the true global optima of these functions. In future, we aim to extend ZSM for the modelling and optimization of complex multi-input single-output (MISO) systems.</p></div>","PeriodicalId":286,"journal":{"name":"Computers & Chemical Engineering","volume":"174 ","pages":"Article 108249"},"PeriodicalIF":3.9000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Zone-wise surrogate modelling (ZSM) of univariate systems\",\"authors\":\"Srikar Venkataraman Srinivas,&nbsp;Iftekhar A Karimi\",\"doi\":\"10.1016/j.compchemeng.2023.108249\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Many complex systems display distinctly different behaviors across regions, zones, or sub-domains. A single surrogate may not suffice in modelling such systems. A better approach would be to identify the various zones and model them individually. In this work, we propose a zone-wise surrogate modelling (ZSM) algorithm to identify various zones in a system's input domain based on a user-specified acceptable goodness of fit and recommend the best surrogate for each identified zone from a library of potential surrogates. We have assessed ZSM on ten case studies involving complex 1-D functions and compared its modelling performance against some non-linear and piecewise models. We also show how ZSM can help in global optimization using five complex multimodal functions and found that a ZSM-based approach successfully identifies the true global optima of these functions. In future, we aim to extend ZSM for the modelling and optimization of complex multi-input single-output (MISO) systems.</p></div>\",\"PeriodicalId\":286,\"journal\":{\"name\":\"Computers & Chemical Engineering\",\"volume\":\"174 \",\"pages\":\"Article 108249\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Chemical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0098135423001199\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098135423001199","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

许多复杂的系统在不同的区域、区域或子域之间表现出明显不同的行为。在为这样的系统建模时,单一的代理可能是不够的。更好的方法是识别不同的区域,并对它们单独建模。在这项工作中,我们提出了一种区域智能代理建模(ZSM)算法,该算法基于用户指定的可接受的拟合优度来识别系统输入域中的各个区域,并从潜在代理库中为每个已识别的区域推荐最佳代理。我们在涉及复杂1-D函数的十个案例研究中评估了ZSM,并将其建模性能与一些非线性和分段模型进行了比较。我们还展示了ZSM如何使用五个复杂的多模态函数来帮助进行全局优化,并发现基于ZSM的方法成功地识别了这些函数的真正全局最优。未来,我们的目标是扩展ZSM用于复杂多输入单输出(MISO)系统的建模和优化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Zone-wise surrogate modelling (ZSM) of univariate systems

Many complex systems display distinctly different behaviors across regions, zones, or sub-domains. A single surrogate may not suffice in modelling such systems. A better approach would be to identify the various zones and model them individually. In this work, we propose a zone-wise surrogate modelling (ZSM) algorithm to identify various zones in a system's input domain based on a user-specified acceptable goodness of fit and recommend the best surrogate for each identified zone from a library of potential surrogates. We have assessed ZSM on ten case studies involving complex 1-D functions and compared its modelling performance against some non-linear and piecewise models. We also show how ZSM can help in global optimization using five complex multimodal functions and found that a ZSM-based approach successfully identifies the true global optima of these functions. In future, we aim to extend ZSM for the modelling and optimization of complex multi-input single-output (MISO) systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers & Chemical Engineering
Computers & Chemical Engineering 工程技术-工程:化工
CiteScore
8.70
自引率
14.00%
发文量
374
审稿时长
70 days
期刊介绍: Computers & Chemical Engineering is primarily a journal of record for new developments in the application of computing and systems technology to chemical engineering problems.
期刊最新文献
The bullwhip effect, market competition and standard deviation ratio in two parallel supply chains CADET-Julia: Efficient and versatile, open-source simulator for batch chromatography in Julia Computer aided formulation design based on molecular dynamics simulation: Detergents with fragrance Model-based real-time optimization in continuous pharmaceutical manufacturing Risk-averse supply chain management via robust reinforcement learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1