{"title":"旁分泌、内分泌和神经分泌对脂肪细胞颜色表型的控制:从椅子上看。","authors":"F Picard","doi":"10.1038/ijosup.2015.2","DOIUrl":null,"url":null,"abstract":"<p><p>After a long drought caused by misjudged irrelevance to human biology, the research field of brown adipose tissue has seen a period of resurgence since 2009 when discoveries of brown fat in adults were reported. However, the molecular and physiological regulators of the different types of adipose tissues-white, beige or brown-are still far from being fully determined. Speakers of the morning session of the 16th Annual Symposium of the Université Laval's Chair in Obesity, a series interestingly launched in 1998 precisely on the topic of uncoupling proteins, presented past and recent findings on non-adrenergic signaling pathways-both upstream and downstream-regulating the metabolic and thermogenic activities of adipose tissue. They went on to show that these pathways are altered in the contexts of obesity and aging, the latter being a very important factor involved in the decline of non-shivering thermogenesis. Whereas opinions diverged on readily applicable solutions for development of candidate therapeutics, the panelists agreed that the new factors involved in the control of the adipose thermogenic program hold great promise for innovation. This will likely depend on how this novel knowledge is integrated into the complex regulation of thermogenesis, which will be achieved through better-defined experimental protocols, both in humans and non-human models. </p>","PeriodicalId":14202,"journal":{"name":"International journal of obesity supplements","volume":"5 Suppl 1","pages":"S4-6"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1038/ijosup.2015.2","citationCount":"1","resultStr":"{\"title\":\"Paracrine, endocrine and neurocrine controls of the adipocyte color phenotype: view from the chair.\",\"authors\":\"F Picard\",\"doi\":\"10.1038/ijosup.2015.2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>After a long drought caused by misjudged irrelevance to human biology, the research field of brown adipose tissue has seen a period of resurgence since 2009 when discoveries of brown fat in adults were reported. However, the molecular and physiological regulators of the different types of adipose tissues-white, beige or brown-are still far from being fully determined. Speakers of the morning session of the 16th Annual Symposium of the Université Laval's Chair in Obesity, a series interestingly launched in 1998 precisely on the topic of uncoupling proteins, presented past and recent findings on non-adrenergic signaling pathways-both upstream and downstream-regulating the metabolic and thermogenic activities of adipose tissue. They went on to show that these pathways are altered in the contexts of obesity and aging, the latter being a very important factor involved in the decline of non-shivering thermogenesis. Whereas opinions diverged on readily applicable solutions for development of candidate therapeutics, the panelists agreed that the new factors involved in the control of the adipose thermogenic program hold great promise for innovation. This will likely depend on how this novel knowledge is integrated into the complex regulation of thermogenesis, which will be achieved through better-defined experimental protocols, both in humans and non-human models. </p>\",\"PeriodicalId\":14202,\"journal\":{\"name\":\"International journal of obesity supplements\",\"volume\":\"5 Suppl 1\",\"pages\":\"S4-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1038/ijosup.2015.2\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of obesity supplements\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1038/ijosup.2015.2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2015/8/4 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of obesity supplements","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/ijosup.2015.2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2015/8/4 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
Paracrine, endocrine and neurocrine controls of the adipocyte color phenotype: view from the chair.
After a long drought caused by misjudged irrelevance to human biology, the research field of brown adipose tissue has seen a period of resurgence since 2009 when discoveries of brown fat in adults were reported. However, the molecular and physiological regulators of the different types of adipose tissues-white, beige or brown-are still far from being fully determined. Speakers of the morning session of the 16th Annual Symposium of the Université Laval's Chair in Obesity, a series interestingly launched in 1998 precisely on the topic of uncoupling proteins, presented past and recent findings on non-adrenergic signaling pathways-both upstream and downstream-regulating the metabolic and thermogenic activities of adipose tissue. They went on to show that these pathways are altered in the contexts of obesity and aging, the latter being a very important factor involved in the decline of non-shivering thermogenesis. Whereas opinions diverged on readily applicable solutions for development of candidate therapeutics, the panelists agreed that the new factors involved in the control of the adipose thermogenic program hold great promise for innovation. This will likely depend on how this novel knowledge is integrated into the complex regulation of thermogenesis, which will be achieved through better-defined experimental protocols, both in humans and non-human models.