Elaine Delvaux , Diego Mastroeni , Jennifer Nolz , Paul D. Coleman
{"title":"从冷冻脑匀浆和激光捕获显微解剖细胞中确定特定基因组位点染色质可及性的新方法","authors":"Elaine Delvaux , Diego Mastroeni , Jennifer Nolz , Paul D. Coleman","doi":"10.1016/j.nepig.2016.03.001","DOIUrl":null,"url":null,"abstract":"<div><p>We describe a novel method for assessing the “open” or “closed” state of chromatin at selected locations within the genome. This method combines the use of Benzonase, which can digest DNA in the presence of actin, with quantitative polymerase chain reaction to define digested regions. We demonstrate the application of this method in brain homogenates and laser captured cells. We also demonstrate application to selected sites within more than 1 gene and multiple sites within 1 gene. We demonstrate the validity of the method by treating cells with valproate, known to render chromatin more permissive, and by comparison with classical digestion with DNase I in an in vitro preparation. Although we demonstrate the use of this method in brain tissue, we also recognize its applicability to other tissue types.</p></div>","PeriodicalId":90931,"journal":{"name":"Neuroepigenetics","volume":"6 ","pages":"Pages 1-9"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.nepig.2016.03.001","citationCount":"0","resultStr":"{\"title\":\"Novel method to ascertain chromatin accessibility at specific genomic loci from frozen brain homogenates and laser capture microdissected defined cells\",\"authors\":\"Elaine Delvaux , Diego Mastroeni , Jennifer Nolz , Paul D. Coleman\",\"doi\":\"10.1016/j.nepig.2016.03.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We describe a novel method for assessing the “open” or “closed” state of chromatin at selected locations within the genome. This method combines the use of Benzonase, which can digest DNA in the presence of actin, with quantitative polymerase chain reaction to define digested regions. We demonstrate the application of this method in brain homogenates and laser captured cells. We also demonstrate application to selected sites within more than 1 gene and multiple sites within 1 gene. We demonstrate the validity of the method by treating cells with valproate, known to render chromatin more permissive, and by comparison with classical digestion with DNase I in an in vitro preparation. Although we demonstrate the use of this method in brain tissue, we also recognize its applicability to other tissue types.</p></div>\",\"PeriodicalId\":90931,\"journal\":{\"name\":\"Neuroepigenetics\",\"volume\":\"6 \",\"pages\":\"Pages 1-9\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.nepig.2016.03.001\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuroepigenetics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214784515300128\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroepigenetics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214784515300128","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Novel method to ascertain chromatin accessibility at specific genomic loci from frozen brain homogenates and laser capture microdissected defined cells
We describe a novel method for assessing the “open” or “closed” state of chromatin at selected locations within the genome. This method combines the use of Benzonase, which can digest DNA in the presence of actin, with quantitative polymerase chain reaction to define digested regions. We demonstrate the application of this method in brain homogenates and laser captured cells. We also demonstrate application to selected sites within more than 1 gene and multiple sites within 1 gene. We demonstrate the validity of the method by treating cells with valproate, known to render chromatin more permissive, and by comparison with classical digestion with DNase I in an in vitro preparation. Although we demonstrate the use of this method in brain tissue, we also recognize its applicability to other tissue types.