Joshua A Levine, Kelly A Kaihara, Brian T Layden, Barton Wicksteed
{"title":"长期激活β细胞中的PKA可持续改善血糖控制、胰岛素敏感性和体重。","authors":"Joshua A Levine, Kelly A Kaihara, Brian T Layden, Barton Wicksteed","doi":"10.1080/19382014.2016.1198457","DOIUrl":null,"url":null,"abstract":"<p><p>Type 2 diabetes is associated with obesity, insulin resistance and β-cell failure. Therapeutic aims are to reduce adiposity, improve insulin sensitivity and enhance β-cell function. However, it has been proposed that chronically increasing insulin release leads to β-cell exhaustion and failure. We previously developed mice to have increased activity of the cAMP-dependent protein kinase (PKA), specifically in β-cells (β-caPKA mice). β-caPKA mice have enhanced acute phase insulin release, which is the primary determinant of the efficacy of glucose clearance. Here these mice were used to determine the sustainability of enhanced insulin secretion, and to characterize peripheral effects of enhanced β-cell function. Increased PKA activity was induced by tamoxifen administration at 10 weeks of age. Male mice were aged to 12 months of age and female mice to 16 months. Glucose control in both male and female β-caPKA mice was significantly improved relative to littermate controls with ad libitum feeding, upon refeeding after fasting, and in glucose tolerance tests. In female mice insulin release was both greater and more rapid than in controls. Female mice were more insulin sensitive than controls. Male and female β-caPKA mice had lower body weights than controls. DEXA analysis of male mice revealed that this was due to reduced adiposity and not due to changes in lean body mass. This study indicates that targeting β-cells to enhance insulin release is sustainable, maintains insulin sensitivity and reduces body weight. These data identify β-cell PKA activity as a novel target for obesity therapies.</p>","PeriodicalId":14671,"journal":{"name":"Islets","volume":"8 5","pages":"125-34"},"PeriodicalIF":1.9000,"publicationDate":"2016-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/19382014.2016.1198457","citationCount":"2","resultStr":"{\"title\":\"Long-term activation of PKA in β-cells provides sustained improvement to glucose control, insulin sensitivity and body weight.\",\"authors\":\"Joshua A Levine, Kelly A Kaihara, Brian T Layden, Barton Wicksteed\",\"doi\":\"10.1080/19382014.2016.1198457\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Type 2 diabetes is associated with obesity, insulin resistance and β-cell failure. Therapeutic aims are to reduce adiposity, improve insulin sensitivity and enhance β-cell function. However, it has been proposed that chronically increasing insulin release leads to β-cell exhaustion and failure. We previously developed mice to have increased activity of the cAMP-dependent protein kinase (PKA), specifically in β-cells (β-caPKA mice). β-caPKA mice have enhanced acute phase insulin release, which is the primary determinant of the efficacy of glucose clearance. Here these mice were used to determine the sustainability of enhanced insulin secretion, and to characterize peripheral effects of enhanced β-cell function. Increased PKA activity was induced by tamoxifen administration at 10 weeks of age. Male mice were aged to 12 months of age and female mice to 16 months. Glucose control in both male and female β-caPKA mice was significantly improved relative to littermate controls with ad libitum feeding, upon refeeding after fasting, and in glucose tolerance tests. In female mice insulin release was both greater and more rapid than in controls. Female mice were more insulin sensitive than controls. Male and female β-caPKA mice had lower body weights than controls. DEXA analysis of male mice revealed that this was due to reduced adiposity and not due to changes in lean body mass. This study indicates that targeting β-cells to enhance insulin release is sustainable, maintains insulin sensitivity and reduces body weight. These data identify β-cell PKA activity as a novel target for obesity therapies.</p>\",\"PeriodicalId\":14671,\"journal\":{\"name\":\"Islets\",\"volume\":\"8 5\",\"pages\":\"125-34\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2016-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/19382014.2016.1198457\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Islets\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/19382014.2016.1198457\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2016/6/24 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Islets","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/19382014.2016.1198457","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2016/6/24 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
Long-term activation of PKA in β-cells provides sustained improvement to glucose control, insulin sensitivity and body weight.
Type 2 diabetes is associated with obesity, insulin resistance and β-cell failure. Therapeutic aims are to reduce adiposity, improve insulin sensitivity and enhance β-cell function. However, it has been proposed that chronically increasing insulin release leads to β-cell exhaustion and failure. We previously developed mice to have increased activity of the cAMP-dependent protein kinase (PKA), specifically in β-cells (β-caPKA mice). β-caPKA mice have enhanced acute phase insulin release, which is the primary determinant of the efficacy of glucose clearance. Here these mice were used to determine the sustainability of enhanced insulin secretion, and to characterize peripheral effects of enhanced β-cell function. Increased PKA activity was induced by tamoxifen administration at 10 weeks of age. Male mice were aged to 12 months of age and female mice to 16 months. Glucose control in both male and female β-caPKA mice was significantly improved relative to littermate controls with ad libitum feeding, upon refeeding after fasting, and in glucose tolerance tests. In female mice insulin release was both greater and more rapid than in controls. Female mice were more insulin sensitive than controls. Male and female β-caPKA mice had lower body weights than controls. DEXA analysis of male mice revealed that this was due to reduced adiposity and not due to changes in lean body mass. This study indicates that targeting β-cells to enhance insulin release is sustainable, maintains insulin sensitivity and reduces body weight. These data identify β-cell PKA activity as a novel target for obesity therapies.
期刊介绍:
Islets is the first international, peer-reviewed research journal dedicated to islet biology. Islets publishes high-quality clinical and experimental research into the physiology and pathology of the islets of Langerhans. In addition to original research manuscripts, Islets is the leading source for cutting-edge Perspectives, Reviews and Commentaries.
Our goal is to foster communication and a rapid exchange of information through timely publication of important results using print as well as electronic formats.