网络套索:大型图的聚类和优化。

David Hallac, Jure Leskovec, Stephen Boyd
{"title":"网络套索:大型图的聚类和优化。","authors":"David Hallac, Jure Leskovec, Stephen Boyd","doi":"10.1145/2783258.2783313","DOIUrl":null,"url":null,"abstract":"<p><p>Convex optimization is an essential tool for modern data analysis, as it provides a framework to formulate and solve many problems in machine learning and data mining. However, general convex optimization solvers do not scale well, and scalable solvers are often specialized to only work on a narrow class of problems. Therefore, there is a need for simple, scalable algorithms that can solve many common optimization problems. In this paper, we introduce the <i>network lasso</i>, a generalization of the group lasso to a network setting that allows for simultaneous clustering and optimization on graphs. We develop an algorithm based on the Alternating Direction Method of Multipliers (ADMM) to solve this problem in a distributed and scalable manner, which allows for guaranteed global convergence even on large graphs. We also examine a non-convex extension of this approach. We then demonstrate that many types of problems can be expressed in our framework. We focus on three in particular - binary classification, predicting housing prices, and event detection in time series data - comparing the network lasso to baseline approaches and showing that it is both a fast and accurate method of solving large optimization problems.</p>","PeriodicalId":74037,"journal":{"name":"KDD : proceedings. International Conference on Knowledge Discovery & Data Mining","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2015-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1145/2783258.2783313","citationCount":"255","resultStr":"{\"title\":\"Network Lasso: Clustering and Optimization in Large Graphs.\",\"authors\":\"David Hallac, Jure Leskovec, Stephen Boyd\",\"doi\":\"10.1145/2783258.2783313\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Convex optimization is an essential tool for modern data analysis, as it provides a framework to formulate and solve many problems in machine learning and data mining. However, general convex optimization solvers do not scale well, and scalable solvers are often specialized to only work on a narrow class of problems. Therefore, there is a need for simple, scalable algorithms that can solve many common optimization problems. In this paper, we introduce the <i>network lasso</i>, a generalization of the group lasso to a network setting that allows for simultaneous clustering and optimization on graphs. We develop an algorithm based on the Alternating Direction Method of Multipliers (ADMM) to solve this problem in a distributed and scalable manner, which allows for guaranteed global convergence even on large graphs. We also examine a non-convex extension of this approach. We then demonstrate that many types of problems can be expressed in our framework. We focus on three in particular - binary classification, predicting housing prices, and event detection in time series data - comparing the network lasso to baseline approaches and showing that it is both a fast and accurate method of solving large optimization problems.</p>\",\"PeriodicalId\":74037,\"journal\":{\"name\":\"KDD : proceedings. International Conference on Knowledge Discovery & Data Mining\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1145/2783258.2783313\",\"citationCount\":\"255\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"KDD : proceedings. International Conference on Knowledge Discovery & Data Mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2783258.2783313\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"KDD : proceedings. International Conference on Knowledge Discovery & Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2783258.2783313","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 255

摘要

凸优化是现代数据分析的重要工具,因为它提供了一个框架来制定和解决机器学习和数据挖掘中的许多问题。然而,一般的凸优化求解器不能很好地扩展,并且可扩展求解器通常只专门用于处理一类狭窄的问题。因此,需要一种简单的、可扩展的算法来解决许多常见的优化问题。在本文中,我们介绍了网络套索,将群套索推广到一种允许同时在图上聚类和优化的网络设置。我们开发了一种基于乘法器交替方向法(ADMM)的算法,以分布式和可扩展的方式解决这个问题,即使在大图上也可以保证全局收敛。我们还研究了这种方法的非凸扩展。然后,我们演示了许多类型的问题可以在我们的框架中表示。我们特别关注三个方面——二元分类、预测房价和时间序列数据中的事件检测——将网络套索与基线方法进行比较,并表明它是解决大型优化问题的快速而准确的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Network Lasso: Clustering and Optimization in Large Graphs.

Convex optimization is an essential tool for modern data analysis, as it provides a framework to formulate and solve many problems in machine learning and data mining. However, general convex optimization solvers do not scale well, and scalable solvers are often specialized to only work on a narrow class of problems. Therefore, there is a need for simple, scalable algorithms that can solve many common optimization problems. In this paper, we introduce the network lasso, a generalization of the group lasso to a network setting that allows for simultaneous clustering and optimization on graphs. We develop an algorithm based on the Alternating Direction Method of Multipliers (ADMM) to solve this problem in a distributed and scalable manner, which allows for guaranteed global convergence even on large graphs. We also examine a non-convex extension of this approach. We then demonstrate that many types of problems can be expressed in our framework. We focus on three in particular - binary classification, predicting housing prices, and event detection in time series data - comparing the network lasso to baseline approaches and showing that it is both a fast and accurate method of solving large optimization problems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Predicting Age-Related Macular Degeneration Progression with Contrastive Attention and Time-Aware LSTM. MolSearch: Search-based Multi-objective Molecular Generation and Property Optimization. Deconfounding Actor-Critic Network with Policy Adaptation for Dynamic Treatment Regimes. MoCL: Data-driven Molecular Fingerprint via Knowledge-aware Contrastive Learning from Molecular Graph. Federated Adversarial Debiasing for Fair and Transferable Representations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1