miR-204靶向PERK,调控UPR信号和β-细胞凋亡。

Q Biochemistry, Genetics and Molecular Biology Molecular endocrinology Pub Date : 2016-08-01 Epub Date: 2016-07-06 DOI:10.1210/me.2016-1056
Guanlan Xu, Junqin Chen, Gu Jing, Truman B Grayson, Anath Shalev
{"title":"miR-204靶向PERK,调控UPR信号和β-细胞凋亡。","authors":"Guanlan Xu,&nbsp;Junqin Chen,&nbsp;Gu Jing,&nbsp;Truman B Grayson,&nbsp;Anath Shalev","doi":"10.1210/me.2016-1056","DOIUrl":null,"url":null,"abstract":"<p><p>Endoplasmic reticulum (ER) stress plays an important role in the pathogenesis of diabetes and the associated β-cell apoptosis. Although microRNAs (miRNAs) have been widely studied in various diseases including diabetes, the role of miRNAs in ER stress and β-cell apoptosis has only started to be elucidated. We recently showed that diabetes increases β-cell miR-204 and have now discovered that miR-204 directly targets the 3'untranslated region of protein kinase R-like ER kinase (PERK), 1 of the 3 ER transmembrane sensors and a key factor of the unfolded protein response (UPR). In addition, by using primary human islets, mouse islets, and INS-1 β-cells, we found that miR-204 decreased PERK expression as well as its downstream factors, activating transcription factor 4 and CCAAT enhancer-binding protein homologous protein, whereas it had no effect on the other 2 ER transmembrane sensors, activating transcription factor 6 and inositol-requiring enzyme-1α. Interestingly, we discovered that miR-204 also inhibited PERK signaling in the context of ER stress, and this exacerbated ER stress-induced β-cell apoptosis. This effect could be mimicked by PERK inhibitors supporting the notion that the miR-204-mediated inhibition of PERK and UPR signaling was conferring these detrimental effects on cell survival. Taken together, we have identified PERK as a novel target of miR-204 and show that miR-204 inhibits PERK signaling and increases ER stress-induced cell death, revealing for the first time a link between this miRNA and UPR. </p>","PeriodicalId":18812,"journal":{"name":"Molecular endocrinology","volume":"30 8","pages":"917-24"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1210/me.2016-1056","citationCount":"45","resultStr":"{\"title\":\"miR-204 Targets PERK and Regulates UPR Signaling and β-Cell Apoptosis.\",\"authors\":\"Guanlan Xu,&nbsp;Junqin Chen,&nbsp;Gu Jing,&nbsp;Truman B Grayson,&nbsp;Anath Shalev\",\"doi\":\"10.1210/me.2016-1056\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Endoplasmic reticulum (ER) stress plays an important role in the pathogenesis of diabetes and the associated β-cell apoptosis. Although microRNAs (miRNAs) have been widely studied in various diseases including diabetes, the role of miRNAs in ER stress and β-cell apoptosis has only started to be elucidated. We recently showed that diabetes increases β-cell miR-204 and have now discovered that miR-204 directly targets the 3'untranslated region of protein kinase R-like ER kinase (PERK), 1 of the 3 ER transmembrane sensors and a key factor of the unfolded protein response (UPR). In addition, by using primary human islets, mouse islets, and INS-1 β-cells, we found that miR-204 decreased PERK expression as well as its downstream factors, activating transcription factor 4 and CCAAT enhancer-binding protein homologous protein, whereas it had no effect on the other 2 ER transmembrane sensors, activating transcription factor 6 and inositol-requiring enzyme-1α. Interestingly, we discovered that miR-204 also inhibited PERK signaling in the context of ER stress, and this exacerbated ER stress-induced β-cell apoptosis. This effect could be mimicked by PERK inhibitors supporting the notion that the miR-204-mediated inhibition of PERK and UPR signaling was conferring these detrimental effects on cell survival. Taken together, we have identified PERK as a novel target of miR-204 and show that miR-204 inhibits PERK signaling and increases ER stress-induced cell death, revealing for the first time a link between this miRNA and UPR. </p>\",\"PeriodicalId\":18812,\"journal\":{\"name\":\"Molecular endocrinology\",\"volume\":\"30 8\",\"pages\":\"917-24\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1210/me.2016-1056\",\"citationCount\":\"45\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular endocrinology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1210/me.2016-1056\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2016/7/6 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular endocrinology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1210/me.2016-1056","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2016/7/6 0:00:00","PubModel":"Epub","JCR":"Q","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 45

摘要

内质网应激在糖尿病发病及相关β细胞凋亡中起重要作用。尽管microRNAs (miRNAs)在包括糖尿病在内的多种疾病中得到了广泛的研究,但miRNAs在内质网应激和β细胞凋亡中的作用才刚刚开始被阐明。我们最近发现糖尿病增加了β细胞miR-204,并且现在发现miR-204直接靶向蛋白激酶r -样ER激酶(PERK)的3'非翻译区,这是3个ER跨膜传感器中的一个,也是未折叠蛋白反应(UPR)的关键因素。此外,通过使用原代人胰岛、小鼠胰岛和INS-1 β-细胞,我们发现miR-204降低PERK及其下游因子、激活转录因子4和CCAAT增强子结合蛋白同源蛋白的表达,而对其他2种ER跨膜传感器、激活转录因子6和肌醇需要酶-1α没有影响。有趣的是,我们发现miR-204在内质网应激下也抑制PERK信号,这加剧了内质网应激诱导的β细胞凋亡。这种效应可以被PERK抑制剂模仿,支持mir -204介导的对PERK和UPR信号的抑制对细胞存活产生这些有害影响的观点。综上所述,我们已经确定PERK是miR-204的新靶点,并表明miR-204抑制PERK信号传导并增加内质网应激诱导的细胞死亡,首次揭示了该miRNA与UPR之间的联系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
miR-204 Targets PERK and Regulates UPR Signaling and β-Cell Apoptosis.

Endoplasmic reticulum (ER) stress plays an important role in the pathogenesis of diabetes and the associated β-cell apoptosis. Although microRNAs (miRNAs) have been widely studied in various diseases including diabetes, the role of miRNAs in ER stress and β-cell apoptosis has only started to be elucidated. We recently showed that diabetes increases β-cell miR-204 and have now discovered that miR-204 directly targets the 3'untranslated region of protein kinase R-like ER kinase (PERK), 1 of the 3 ER transmembrane sensors and a key factor of the unfolded protein response (UPR). In addition, by using primary human islets, mouse islets, and INS-1 β-cells, we found that miR-204 decreased PERK expression as well as its downstream factors, activating transcription factor 4 and CCAAT enhancer-binding protein homologous protein, whereas it had no effect on the other 2 ER transmembrane sensors, activating transcription factor 6 and inositol-requiring enzyme-1α. Interestingly, we discovered that miR-204 also inhibited PERK signaling in the context of ER stress, and this exacerbated ER stress-induced β-cell apoptosis. This effect could be mimicked by PERK inhibitors supporting the notion that the miR-204-mediated inhibition of PERK and UPR signaling was conferring these detrimental effects on cell survival. Taken together, we have identified PERK as a novel target of miR-204 and show that miR-204 inhibits PERK signaling and increases ER stress-induced cell death, revealing for the first time a link between this miRNA and UPR.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular endocrinology
Molecular endocrinology 医学-内分泌学与代谢
CiteScore
3.49
自引率
0.00%
发文量
0
审稿时长
12 months
期刊介绍: Molecular Endocrinology provides a forum for papers devoted to describing molecular mechanisms by which hormones and related compounds regulate function. It has quickly achieved a reputation as a high visibility journal with very rapid communication of cutting edge science: the average turnaround time is 28 days from manuscript receipt to first decision, and accepted manuscripts are published online within a week through Rapid Electronic Publication. In the 2008 Journal Citation Report, Molecular Endocrinology is ranked 16th out of 93 journals in the Endocrinology and Metabolism category, with an Impact Factor of 5.389.
期刊最新文献
Editorial Reflections on the Demise of Molecular Endocrinology and the Future of Molecular Hormone Action Research. Origins of the Field of Molecular Endocrinology: A Personal Perspective. Editorial: Reflections on the Impact of Molecular Endocrinology on a Scientific Career. Reflections on the Merger of Molecular Endocrinology and Endocrinology. Editorial: Final Musings on the Impact of Molecular Endocrinology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1