{"title":"经皮心室辅助装置:健康技术评估。","authors":"","doi":"","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Percutaneous coronary intervention (PCI)-using a catheter to place a stent to keep blood vessels open-is increasingly used for high-risk patients who cannot undergo surgery. Cardiogenic shock (when the heart suddenly cannot pump enough blood) is associated with a high mortality rate. The percutaneous ventricular assist device can help control blood pressure and increase blood flow in these high-risk conditions. This health technology assessment examined the benefits, harms, and budget impact of the Impella percutaneous ventricular assist device in high-risk PCI and cardiogenic shock. We also analyzed cost-effectiveness of the Impella device in high-risk PCI.</p><p><strong>Methods: </strong>We performed a systematic search of the literature for studies examining the effects of the Impella percutaneous ventricular assist device in high-risk PCI and cardiogenic shock, and appraised the evidence according to the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) Working Group criteria, focusing on hemodynamic stability, mortality, major adverse cardiac events, bleeding, and vascular complications. We developed a Markov decision-analytical model to assess the cost- effectiveness of Impella devices versus intra-aortic balloon pumps (IABPs), calculated incremental cost-effectiveness ratios (ICERs) using a 10-year time horizon, and conducted sensitivity analyses to examine the robustness of the estimates. The economic model was conducted from the perspective of the Ontario Ministry of Health and Long-Term Care.</p><p><strong>Results: </strong>Eighteen studies (one randomized controlled trial and 10 observational studies for high-risk PCI, and one randomized controlled trial and six observational studies for cardiogenic shock) were included in the clinical review. Compared with IABPs, Impella 2.5, one model of the device, improved hemodynamic parameters (GRADE low-very low) but showed no significant difference in mortality (GRADE low), major adverse cardiac events (GRADE low), bleeding (GRADE low), or vascular complications (GRADE low) in high-risk PCI and cardiogenic shock. No randomized controlled trials or prospective observational studies with a control group have studied Impella CP and Impella 5.0 (other models of the device) in patients undergoing high-risk PCI or patients with cardiogenic shock. The economic model predicted that treatment with the Impella device would have fewer quality-adjusted life-years (QALYs) and higher costs than IABP in high-risk PCI patients. These observations were consistent even when uncertainty in model inputs and parameters was considered. We estimated that adopting Impella would increase costs by $2.9 to $11.5 million per year.</p><p><strong>Conclusions: </strong>On the basis of evidence of low to very low quality, Impella 2.5 devices were associated with improved hemodynamic stability, but had mortality rates and safety profile similar to IABPs in high-risk PCI and cardiogenic shock. Our cost-effectiveness analysis indicated that Impella 2.5 is likely associated with greater costs and fewer quality-adjusted life years than IABP.</p>","PeriodicalId":39160,"journal":{"name":"Ontario Health Technology Assessment Series","volume":"17 2","pages":"1-97"},"PeriodicalIF":0.0000,"publicationDate":"2017-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5313122/pdf/ohtas-17-1.pdf","citationCount":"0","resultStr":"{\"title\":\"Percutaneous Ventricular Assist Devices: A Health Technology Assessment.\",\"authors\":\"\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Percutaneous coronary intervention (PCI)-using a catheter to place a stent to keep blood vessels open-is increasingly used for high-risk patients who cannot undergo surgery. Cardiogenic shock (when the heart suddenly cannot pump enough blood) is associated with a high mortality rate. The percutaneous ventricular assist device can help control blood pressure and increase blood flow in these high-risk conditions. This health technology assessment examined the benefits, harms, and budget impact of the Impella percutaneous ventricular assist device in high-risk PCI and cardiogenic shock. We also analyzed cost-effectiveness of the Impella device in high-risk PCI.</p><p><strong>Methods: </strong>We performed a systematic search of the literature for studies examining the effects of the Impella percutaneous ventricular assist device in high-risk PCI and cardiogenic shock, and appraised the evidence according to the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) Working Group criteria, focusing on hemodynamic stability, mortality, major adverse cardiac events, bleeding, and vascular complications. We developed a Markov decision-analytical model to assess the cost- effectiveness of Impella devices versus intra-aortic balloon pumps (IABPs), calculated incremental cost-effectiveness ratios (ICERs) using a 10-year time horizon, and conducted sensitivity analyses to examine the robustness of the estimates. The economic model was conducted from the perspective of the Ontario Ministry of Health and Long-Term Care.</p><p><strong>Results: </strong>Eighteen studies (one randomized controlled trial and 10 observational studies for high-risk PCI, and one randomized controlled trial and six observational studies for cardiogenic shock) were included in the clinical review. Compared with IABPs, Impella 2.5, one model of the device, improved hemodynamic parameters (GRADE low-very low) but showed no significant difference in mortality (GRADE low), major adverse cardiac events (GRADE low), bleeding (GRADE low), or vascular complications (GRADE low) in high-risk PCI and cardiogenic shock. No randomized controlled trials or prospective observational studies with a control group have studied Impella CP and Impella 5.0 (other models of the device) in patients undergoing high-risk PCI or patients with cardiogenic shock. The economic model predicted that treatment with the Impella device would have fewer quality-adjusted life-years (QALYs) and higher costs than IABP in high-risk PCI patients. These observations were consistent even when uncertainty in model inputs and parameters was considered. We estimated that adopting Impella would increase costs by $2.9 to $11.5 million per year.</p><p><strong>Conclusions: </strong>On the basis of evidence of low to very low quality, Impella 2.5 devices were associated with improved hemodynamic stability, but had mortality rates and safety profile similar to IABPs in high-risk PCI and cardiogenic shock. Our cost-effectiveness analysis indicated that Impella 2.5 is likely associated with greater costs and fewer quality-adjusted life years than IABP.</p>\",\"PeriodicalId\":39160,\"journal\":{\"name\":\"Ontario Health Technology Assessment Series\",\"volume\":\"17 2\",\"pages\":\"1-97\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-02-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5313122/pdf/ohtas-17-1.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ontario Health Technology Assessment Series\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2017/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ontario Health Technology Assessment Series","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2017/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
Percutaneous Ventricular Assist Devices: A Health Technology Assessment.
Background: Percutaneous coronary intervention (PCI)-using a catheter to place a stent to keep blood vessels open-is increasingly used for high-risk patients who cannot undergo surgery. Cardiogenic shock (when the heart suddenly cannot pump enough blood) is associated with a high mortality rate. The percutaneous ventricular assist device can help control blood pressure and increase blood flow in these high-risk conditions. This health technology assessment examined the benefits, harms, and budget impact of the Impella percutaneous ventricular assist device in high-risk PCI and cardiogenic shock. We also analyzed cost-effectiveness of the Impella device in high-risk PCI.
Methods: We performed a systematic search of the literature for studies examining the effects of the Impella percutaneous ventricular assist device in high-risk PCI and cardiogenic shock, and appraised the evidence according to the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) Working Group criteria, focusing on hemodynamic stability, mortality, major adverse cardiac events, bleeding, and vascular complications. We developed a Markov decision-analytical model to assess the cost- effectiveness of Impella devices versus intra-aortic balloon pumps (IABPs), calculated incremental cost-effectiveness ratios (ICERs) using a 10-year time horizon, and conducted sensitivity analyses to examine the robustness of the estimates. The economic model was conducted from the perspective of the Ontario Ministry of Health and Long-Term Care.
Results: Eighteen studies (one randomized controlled trial and 10 observational studies for high-risk PCI, and one randomized controlled trial and six observational studies for cardiogenic shock) were included in the clinical review. Compared with IABPs, Impella 2.5, one model of the device, improved hemodynamic parameters (GRADE low-very low) but showed no significant difference in mortality (GRADE low), major adverse cardiac events (GRADE low), bleeding (GRADE low), or vascular complications (GRADE low) in high-risk PCI and cardiogenic shock. No randomized controlled trials or prospective observational studies with a control group have studied Impella CP and Impella 5.0 (other models of the device) in patients undergoing high-risk PCI or patients with cardiogenic shock. The economic model predicted that treatment with the Impella device would have fewer quality-adjusted life-years (QALYs) and higher costs than IABP in high-risk PCI patients. These observations were consistent even when uncertainty in model inputs and parameters was considered. We estimated that adopting Impella would increase costs by $2.9 to $11.5 million per year.
Conclusions: On the basis of evidence of low to very low quality, Impella 2.5 devices were associated with improved hemodynamic stability, but had mortality rates and safety profile similar to IABPs in high-risk PCI and cardiogenic shock. Our cost-effectiveness analysis indicated that Impella 2.5 is likely associated with greater costs and fewer quality-adjusted life years than IABP.