基于稳定前馈轨迹的拟人双足行走控制框架。

Siavash Rezazadeh, Robert D Gregg
{"title":"基于稳定前馈轨迹的拟人双足行走控制框架。","authors":"Siavash Rezazadeh,&nbsp;Robert D Gregg","doi":"10.1115/DSCC2016-9851","DOIUrl":null,"url":null,"abstract":"<p><p>Although dynamic walking methods have had notable successes in control of bipedal robots in the recent years, still most of the humanoid robots rely on quasi-static Zero Moment Point controllers. This work is an attempt to design a highly stable controller for dynamic walking of a human-like model which can be used both for control of humanoid robots and prosthetic legs. The method is based on using time-based trajectories that can induce a highly stable limit cycle to the bipedal robot. The time-based nature of the controller motivates its use to entrain a model of an amputee walking, which can potentially lead to a better coordination of the interaction between the prosthesis and the human. The simulations demonstrate the stability of the controller and its robustness against external perturbations.</p>","PeriodicalId":90691,"journal":{"name":"Proceedings of the ASME Dynamic Systems and Control Conference. ASME Dynamic Systems and Control Conference","volume":"2016 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1115/DSCC2016-9851","citationCount":"3","resultStr":"{\"title\":\"A Control Framework for Anthropomorphic Biped Walking Based on Stabilizing Feedforward Trajectories.\",\"authors\":\"Siavash Rezazadeh,&nbsp;Robert D Gregg\",\"doi\":\"10.1115/DSCC2016-9851\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Although dynamic walking methods have had notable successes in control of bipedal robots in the recent years, still most of the humanoid robots rely on quasi-static Zero Moment Point controllers. This work is an attempt to design a highly stable controller for dynamic walking of a human-like model which can be used both for control of humanoid robots and prosthetic legs. The method is based on using time-based trajectories that can induce a highly stable limit cycle to the bipedal robot. The time-based nature of the controller motivates its use to entrain a model of an amputee walking, which can potentially lead to a better coordination of the interaction between the prosthesis and the human. The simulations demonstrate the stability of the controller and its robustness against external perturbations.</p>\",\"PeriodicalId\":90691,\"journal\":{\"name\":\"Proceedings of the ASME Dynamic Systems and Control Conference. ASME Dynamic Systems and Control Conference\",\"volume\":\"2016 \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1115/DSCC2016-9851\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ASME Dynamic Systems and Control Conference. ASME Dynamic Systems and Control Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/DSCC2016-9851\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ASME Dynamic Systems and Control Conference. ASME Dynamic Systems and Control Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/DSCC2016-9851","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

近年来,动态步行方法在双足机器人的控制中取得了显著的成功,但大多数类人机器人仍然依赖于准静态零力矩点控制器。本工作是为类人模型的动态行走设计一个高度稳定的控制器的尝试,该控制器既可以用于控制类人机器人,也可以用于控制假腿。该方法是基于使用基于时间的轨迹,可以诱导高度稳定的极限环的两足机器人。控制器基于时间的特性促使其用于训练截肢者行走的模型,这可能会更好地协调假肢与人之间的相互作用。仿真结果证明了该控制器的稳定性和对外部扰动的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Control Framework for Anthropomorphic Biped Walking Based on Stabilizing Feedforward Trajectories.

Although dynamic walking methods have had notable successes in control of bipedal robots in the recent years, still most of the humanoid robots rely on quasi-static Zero Moment Point controllers. This work is an attempt to design a highly stable controller for dynamic walking of a human-like model which can be used both for control of humanoid robots and prosthetic legs. The method is based on using time-based trajectories that can induce a highly stable limit cycle to the bipedal robot. The time-based nature of the controller motivates its use to entrain a model of an amputee walking, which can potentially lead to a better coordination of the interaction between the prosthesis and the human. The simulations demonstrate the stability of the controller and its robustness against external perturbations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
STEERABLE NEEDLE TRAJECTORY FOLLOWING IN THE LUNG: TORSIONAL DEADBAND COMPENSATION AND FULL POSE ESTIMATION WITH 5DOF FEEDBACK FOR NEEDLES PASSING THROUGH FLEXIBLE ENDOSCOPES. A SERIES ELASTIC ACTUATOR DESIGN AND CONTROL IN A LINKAGE BASED HAND EXOSKELETON. OBSERVER-BASED CONTROL OF A DUAL-STAGE PIEZOELECTRIC SCANNER. HUMAN-INSPIRED ALGEBRAIC CURVES FOR WEARABLE ROBOT CONTROL. CONTROLLING PHYSICAL INTERACTIONS: HUMANS DO NOT MINIMIZE MUSCLE EFFORT.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1